Your browser doesn't support javascript.
loading
A Comprehensive Pan-Cancer Analysis of Cytochrome C Oxidase Assembly Factor 1 (COA1) Reveals Instrumental Role of Mitochondrial Protein Assembly in Cancer that Modulates Disease Progression and Prognostic Outcome.
Ghosh, Sayak; Goswami, Devyani; Dutta, Rittick; Ghatak, Debapriya; De, Rudranil.
Afiliação
  • Ghosh S; Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
  • Goswami D; Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
  • Dutta R; Swami Vivekananda University, Kolkata, 700121, West Bengal, India.
  • Ghatak D; Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India.
  • De R; Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India. drudranil@kol.amity.edu.
Cell Biochem Biophys ; 2024 Jun 22.
Article em En | MEDLINE | ID: mdl-38907941
ABSTRACT
Cytochrome c oxidase assembly factor 1 (COA1), a mitochondrial respiratory chain complex assembly factor protein of inner mitochondrial membrane (IMM), is involved in translating many mitochondrial components and assembling nuclear-encoded components within mitochondria. Given the lack of extensive research on COA1 in cancer, this study undertakes a comprehensive pan-cancer analysis of COA1, which is overexpressed across various cancer types, shedding light on its multifaceted role in tumorigenesis, prognosis, and tumor microenvironment (TME) modulation. Leveraging bioinformatics tools and public databases, we elucidated its potential as a diagnostic cancer biomarker as well as a target for novel anti-cancer therapeutics. Gene expression analysis using "TIMER2.0", "UALCAN" and "GEPIA2" platforms, supported by protein expression data, revealed a significant correlation between COA1 upregulation and poor prognosis in Kaplan-Meir analysis, underscoring its clinical relevance. Additionally, genetic mutation analysis of COA1 with the help of "cBioPortal" warrants further exploration into its functional significance. Moreover, our investigation of the tumor microenvironment unveiled the interplay of COA1 with fibroblast and T cell infiltration implicating the role of COA1 in the tumor immune microenvironment. Furthermore, COA1-related gene enrichment study in "GeneMANIA" and pathway cross-talk analysis with Gene Ontology (GO) gene sets established comprehensive clarifications about the molecular pathways and protein networks associated with COA1 deregulation. Overall, this study lays a sturdy foundation to support future research endeavors targeting COA1, unraveling the molecular mechanisms underlying COA1 deregulation, and exploring its therapeutic potential in cancer.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cell Biochem Biophys Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cell Biochem Biophys Ano de publicação: 2024 Tipo de documento: Article