Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow.
Materials (Basel)
; 17(12)2024 Jun 20.
Article
em En
| MEDLINE
| ID: mdl-38930401
ABSTRACT
In nature, lakes and water channels offer abundant underwater energy sources. However, effectively harnessing these green and sustainable underwater energy sources is challenging due to their low flow velocities. Here, we propose an underwater energy-harvesting system based on a cylindrical bluff body and a cantilever beam composed of a macro fiber composite (MFC), taking advantage of the MFC's low-frequency, lightweight, and high piezoelectric properties to achieve energy harvesting in low-frequency and low-speed water flows. When a water flow impacts the cylindrical bluff body, it generates vibration-enhanced and low-frequency vortices behind the bluff body. The optimized diameter of the bluff body and the distance between the bluff body and the MFC were determined using finite element analysis software, specifically COMSOL. According to the simulation results, an energy-harvesting system based on an MFC cantilever beam applied in a low-frequency and low-speed water flow was designed and prepared. When the diameter of the bluff body was 25 mm, and the distance between the bluff body and MFC was 10 mm and the maximum output voltage was 22.73 V; the power density could reach 0.55 mW/cm2 after matching the appropriate load. The simulation results and experimental findings of this study provide valuable references for designing and investigating energy-harvesting systems applied in low-frequency and low-speed water flows.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Materials (Basel)
Ano de publicação:
2024
Tipo de documento:
Article