Your browser doesn't support javascript.
loading
Dihydromyricetin ameliorates diabetic renal fibrosis via regulating SphK1 to suppress the activation of NF-κB pathway.
Wen, Min; Sun, Xiaohong; Pan, Linjie; Jing, Shujin; Zhang, Xuting; Liang, Liyin; Xiao, Haiming; Liu, Peiqing; Xu, Zhanchi; Zhang, Qun; Huang, Heqing.
Afiliação
  • Wen M; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510801, China.
  • Sun X; Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, China.
  • Pan L; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
  • Jing S; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
  • Zhang X; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
  • Liang L; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
  • Xiao H; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
  • Liu P; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
  • Xu Z; Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China. Electronic address: xuzhch25@mail.sysu.edu.cn.
  • Zhang Q; Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China. Electronic address: zq1979@smu.edu.cn.
  • Huang H; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510801, China. Electronic address: Huangheq1125@163.com.
Eur J Pharmacol ; 978: 176799, 2024 Sep 05.
Article em En | MEDLINE | ID: mdl-38945289
ABSTRACT
Dihydromyricetin (DHM) is a flavonoid from vine tea with broad pharmacological benefits, which improve inflammation by blocking the NF-κB pathway. A growing body of research indicates that chronic kidney inflammation is vital to the pathogenesis of diabetic renal fibrosis. Sphingosine kinase-1 (SphK1) is a key regulator of diabetic renal inflammation, which triggers the NF-κB pathway. Hence, we evaluated whether DHM regulates diabetic renal inflammatory fibrosis by acting on SphK1. Here, we demonstrated that DHM effectively suppressed the synthesis of fibrotic and inflammatory adhesion factors like ICAM-1, and VCAM-1 in streptozotocin-treated high-fat diet-induced diabetic mice and HG-induced glomerular mesangial cells (GMCs). Moreover, DHM significantly suppressed NF-κB pathway activation and reduced SphK1 activity and protein expression under diabetic conditions. Mechanistically, the results of molecular docking, molecular dynamics simulation, and cellular thermal shift assay revealed that DHM stably bound to the binding pocket of SphK1, thereby reducing sphingosine-1-phosphate content and SphK1 enzymatic activity, which ultimately inhibited NF-κB DNA binding, transcriptional activity, and nuclear translocation. In conclusion, our data suggested that DHM inhibited SphK1 phosphorylation to prevent NF-κB activation thus ameliorating diabetic renal fibrosis. This supported the clinical use and further drug development of DHM as a potential candidate for treating diabetic renal fibrosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrose / Transdução de Sinais / NF-kappa B / Fosfotransferases (Aceptor do Grupo Álcool) / Flavonóis / Diabetes Mellitus Experimental / Nefropatias Diabéticas Limite: Animals Idioma: En Revista: Eur J Pharmacol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrose / Transdução de Sinais / NF-kappa B / Fosfotransferases (Aceptor do Grupo Álcool) / Flavonóis / Diabetes Mellitus Experimental / Nefropatias Diabéticas Limite: Animals Idioma: En Revista: Eur J Pharmacol Ano de publicação: 2024 Tipo de documento: Article