Your browser doesn't support javascript.
loading
Abscisic acid-mediated guard cell metabolism regulation.
Auler, Priscila A; Lemos, Moaciria de S; Porto, Nicole P; Mendes, Kellyane da R; Bret, Raissa S C; Daloso, Danilo M.
Afiliação
  • Auler PA; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Lemos MS; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Porto NP; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Mendes KDR; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Bret RSC; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
  • Daloso DM; LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil. Electronic address: daloso@ufc.br.
Plant Physiol Biochem ; 214: 108889, 2024 Sep.
Article em En | MEDLINE | ID: mdl-38954945
ABSTRACT
Abscisic acid (ABA) is crucial for plant water deficit (WD) acclimation, but how the interplay between ABA and guard cell (GC) metabolism aids plant WD acclimation remains unclear. Here, we investigated how ABA regulates GC metabolism and how this contributes to plant WD acclimation using tomato wild type (WT) and the ABA-deficient sitiens mutant. These genotypes were characterized at physiological, metabolic, and transcriptional levels under recurring WD periods and were used to perform a13C-glucose labelling experiment using isolated guard cells following exogenously applied ABA. ABA deficiency altered the level of sugars and organic acids in GCs in both irrigated and WD plants and the dynamic of accumulation/degradation of these compounds in GCs during the dark-to-light transition. WD-induced metabolic changes were more pronounced in sitiens than WT GCs. Results from the 13C-labelling experiment indicate that ABA is required for the glycolytic fluxes toward malate and acts as a negative regulator of a putative sucrose substrate cycle. The expression of key ABA-biosynthetic genes was higher in WT than in sitiens GCs after two cycles of WD. Additionally, the intrinsic leaf water use efficiency increased only in WT after the second WD cycle, compared to sitiens. Our results highlight that ABA deficiency disrupts the homeostasis of GC primary metabolism and the WD memory, negatively affecting plant WD acclimation. Our study demonstrates which metabolic pathways are activated by WD and/or regulated by ABA in GCs, which improves our understanding of plant WD acclimation, with clear consequences for plant metabolic engineering in the future.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Abscísico / Solanum lycopersicum Idioma: En Revista: Plant Physiol Biochem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Abscísico / Solanum lycopersicum Idioma: En Revista: Plant Physiol Biochem Ano de publicação: 2024 Tipo de documento: Article