Your browser doesn't support javascript.
loading
The influence of drying methods on extract content, tyrosinase activity inhibition, and mechanism in Ascophyllum nodosum: A combined microstructural and kinetic study.
Lu, Yujing; Wang, Yuting; Liu, Yu; Wang, Yuze; Guo, Sainan; Sun, Kailing; Qi, Hang.
Afiliação
  • Lu Y; SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
  • Wang Y; SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
  • Liu Y; SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
  • Wang Y; SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
  • Guo S; SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
  • Sun K; SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
  • Qi H; SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.. Electronic address: qihang@dlpu.edu.cn.
Food Chem ; 458: 140230, 2024 Nov 15.
Article em En | MEDLINE | ID: mdl-38954954
ABSTRACT
This study evaluates vacuum drying (VD), microwave drying (MD), hot air drying (HAD), and freeze drying (FD), on the color and microstructure changes of Ascophyllum nodosum (A. nodosum), which affect the extraction of polyphenols and flavonoids. During drying, VD and FD show slight color change and looser structure, aiding in active compound preservation and extraction. Polyphenols extracted from A. nodosum (PEAn) using these methods show higher anti-tyrosinase activity, with VD treatment exhibiting the strongest inhibition. Kinetic studies demonstrate competitive inhibition between PEAn and tyrosinase. The binding constant (Ki) values indicate that PEAn treated with VD exhibits the most effective inhibition on tyrosinase, and the Zeta potential suggests the formation of the most stable complex. Circular dichroism (CD) spectroscopy shows significant enzyme rearrangement with VD-treated PEAn. Molecular docking confirms strong binding affinity. This study aims to enhance the utility of A. nodosum and develop novel uses for tyrosinase inhibitors in food.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Extratos Vegetais / Monofenol Mono-Oxigenase / Ascophyllum / Inibidores Enzimáticos / Simulação de Acoplamento Molecular Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Extratos Vegetais / Monofenol Mono-Oxigenase / Ascophyllum / Inibidores Enzimáticos / Simulação de Acoplamento Molecular Idioma: En Revista: Food Chem Ano de publicação: 2024 Tipo de documento: Article