Your browser doesn't support javascript.
loading
Zwitterion-functionalized nanofiber-based composite proton exchange membranes with superior ionic conductivity and chemical stability for direct methanol fuel cells.
Liu, Ning; Bi, Shuguang; Ou, Ying; Liu, Hai; Zhang, Yi; Gong, Chunli.
Afiliação
  • Liu N; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei, 432000
  • Bi S; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China. Electronic address: sgbi@wtu.edu.cn.
  • Ou Y; School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei, 432000, PR China.
  • Liu H; School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei, 432000, PR China.
  • Zhang Y; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
  • Gong C; School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei, 432000, PR China. Electronic address: chunli.gong@hbeu.edu.cn.
J Colloid Interface Sci ; 674: 925-937, 2024 Nov 15.
Article em En | MEDLINE | ID: mdl-38959738
ABSTRACT
Proton exchange membranes with high ionic conductivity and good chemical stability are critical for achieving high power density and long lifespan of direct methanol cells (DMFCs). Herein, a zwitterionic molecule was grafted onto the surface of polyvinylidene fluoride (PVDF) nanofibers to obtain functionalized PVDF porous substrate (SBMA-PDA@PVDF). Then, sulfonated poly(ether ether ketone) (SPEEK) was filled into the pores of SBMA-PDA@PVDF, and further ionic cross-linked via H2SO4 to prepare the composite membrane (SBMA-PDA@PVDF/SPEEK). The basic groups on the zwitterionic interface could not only establish ionic cross-linking with SPEEK to increase chemical stability and reduce swelling, but also serve as the adsorption sites for subsequent H2SO4 cross-linking to significantly enhance proton conductivity. Super-high proton conductivity (165.34 mS cm-1, 80 °C) was achieved for the membrane, which was 2.12 times higher than that of the pure SPEEK. Moreover, the SBMA-PDA@PVDF/SPEEK membrane exhibited remarkably improved oxidative stability of 91.6 % mass retention after soaking in Fenton's agent for 12 h, while pure SPEEK completely decomposed. Satisfactorily, the DMFC assembled with SBMA-PDA@PVDF/SPEEK exhibited a peak power density of 99.01 mW cm-2, which was twice as much as that of commercial Nafion 212 (48.88 mW cm-2). After 235 h durability test, only 11 % voltage loss was observed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article