Your browser doesn't support javascript.
loading
Neural Network Enables High Accuracy for Hepatitis B Surface Antigen Detection with a Plasmonic Platform.
Sun, Weihong; Nan, Jingjie; Xu, Hongqin; Wang, Lei; Niu, Junqi; Zhang, Junhu; Yang, Bai.
Afiliação
  • Sun W; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China.
  • Nan J; State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
  • Xu H; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China.
  • Wang L; State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
  • Niu J; Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, P. R. China.
  • Zhang J; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China.
  • Yang B; State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Nano Lett ; 24(28): 8784-8792, 2024 Jul 17.
Article em En | MEDLINE | ID: mdl-38975746
ABSTRACT
The detection of hepatitis B surface antigen (HBsAg) is critical in diagnosing hepatitis B virus (HBV) infection. However, existing clinical detection technologies inevitably cause certain inaccuracies, leading to delayed or unwarranted treatment. Here, we introduce a label-free plasmonic biosensing method based on the thickness-sensitive plasmonic coupling, combined with supervised deep learning (DL) using neural networks. The strategy of utilizing neural networks to process output data can reduce the limit of detection (LOD) of the sensor and significantly improve the accuracy (from 93.1%-97.4% to 99%-99.6%). Compared with widely used emerging clinical technologies, our platform achieves accurate decisions with higher sensitivity in a short assay time (∼30 min). The integration of DL models considerably simplifies the readout procedure, resulting in a substantial decrease in processing time. Our findings offer a promising avenue for developing high-precision molecular detection tools for point-of-care (POC) applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Redes Neurais de Computação / Hepatite B / Antígenos de Superfície da Hepatite B Limite: Humans Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Redes Neurais de Computação / Hepatite B / Antígenos de Superfície da Hepatite B Limite: Humans Idioma: En Revista: Nano Lett Ano de publicação: 2024 Tipo de documento: Article