Your browser doesn't support javascript.
loading
Biochemical characterization, biosynthesis mechanism, and functional evaluation of selenium-enriched Aspergillus oryzae A02.
Gao, Le; Li, Xiaolin; Li, Yumeng; Zhang, Zhaokun; Wang, Jialu; Xu, Chao; Wu, Xin.
Afiliação
  • Gao L; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China.
  • Li X; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China.
  • Li Y; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China.
  • Zhang Z; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China.
  • Wang J; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China.
  • Xu C; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China.
  • Wu X; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, 300308 Tianjin, China. Electronic address: wuxin@tib.cas.cn.
Int J Biol Macromol ; 275(Pt 2): 133714, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38977051
ABSTRACT
The synthesis mechanisms and function evaluation of selenium(Se)-enriched microorganism remain relatively unexplored. This study unveils that total Se content within A. oryzae A02 mycelium soared to an impressive 8462 mg/kg DCW, surpassing Se-enriched yeast by 2-3 times. Selenium exists in two predominant forms within A. oryzae A02 selenoproteins (SeMet 32.1 %, SeCys 14.4 %) and selenium nanoparticles (SeNPs; 53.5 %). The extensive quantitative characterization of the elemental composition, surface morphology, and size of SeNPs on A. oryzae A02 mycelium significantly differs from those reported for other microorganisms. Comparative RNA-Seq analysis revealed the upregulation of functional genes implicated in selenium transformation, activating multiple potential pathways for selenium reduction. The assimilatory and dissimilatory reductions of Se oxyanions engaged numerous parallel and interconnected pathways, manifesting a harmonious equilibrium in overall Se biotransformation in A. oryzae A02. Furthermore, selenium-enriched A. oryzae A02 was observed to primarily upregulate peroxisome activity while downregulating estrogen 2-hydroxylase activity in mice hepatocytes, suggesting its potential in fortifying antioxidant physiological functions and upholding metabolic balance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aspergillus oryzae / Selênio Limite: Animals Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aspergillus oryzae / Selênio Limite: Animals Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article