Characterization of Degraded Konjac Glucomannan from an Isolated Bacillus licheniformis Strain with Multi-Enzyme Synergetic Action.
Foods
; 13(13)2024 Jun 27.
Article
em En
| MEDLINE
| ID: mdl-38998547
ABSTRACT
The large molecular weight and high viscosity of natural konjac glucomannan (KGM) limit its industrial application. Microbial degradation of low-molecular-weight KGM has health benefits and various biological functions; however, the available KGM strains used in the industry have microbial contamination and low degradation efficiencies. Therefore, exploring novelly adaptable strains is critical for industrial processes. Here, the Bacillus licheniformis Z7-1 strain isolated from decaying konjac showed high efficiency for KGM degradation. The monosaccharide composition of the degradation products had a reduced molar ratio of mannose to glucose, indicating that Z7-1 preferentially degraded glucose in KGM. The degraded component was further characterized by ESI-MS, Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), and it also exhibited good antibacterial activity against various food-spoilage bacteria. Genome sequencing and zymolytic analysis revealed that abundant carbohydrate-active enzymes exist in the Z7-1 genome, with at least five types of extracellular enzymes responsible for KGM degradation, manifesting multi-enzyme synergetic action. The extracellular enzymes had significant thermal stability, indicating their potential application in industry. This study provides an alternative method for obtaining low-molecular-weight KGM with antibacterial functions and supports foundational knowledge for its development as a biocatalyst for the direct conversion of biomass polysaccharides into functional components.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Foods
Ano de publicação:
2024
Tipo de documento:
Article