Your browser doesn't support javascript.
loading
Thermomechanical Material Characterization of Polyethylene Terephthalate Glycol with 30% Carbon Fiber for Large-Format Additive Manufacturing of Polymer Structures.
Martin, Katie A; Riveros, Guillermo A; Thornell, Travis L; McClelland, Zackery B; Freeman, Elton L; Stinson, James T.
Afiliação
  • Martin KA; Geotechnical and Structures Laboratory (GSL) at the US Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC), 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
  • Riveros GA; Information Technology Laboratory (ITL) at the US Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC), 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
  • Thornell TL; Geotechnical and Structures Laboratory (GSL) at the US Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC), 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
  • McClelland ZB; Geotechnical and Structures Laboratory (GSL) at the US Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC), 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
  • Freeman EL; Information Technology Laboratory (ITL) at the US Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC), 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
  • Stinson JT; Information Technology Laboratory (ITL) at the US Army Corps of Engineers (USACE) Engineer Research and Development Center (ERDC), 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
Polymers (Basel) ; 16(13)2024 Jul 04.
Article em En | MEDLINE | ID: mdl-39000768
ABSTRACT
Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% carbon fiber (PETG CF30%) samples for thermomechanical characterization. Thermogravimetric analysis (TGA) shows that the samples were 30% carbon fiber by weight. X-ray microscopy (XRM) and porosity studies find 25% voids/volume for undried material and 1.63% voids/volume for dry material. Differential scanning calorimetry (DSC) shows a glass transition temperature (Tg) of 66 °C, while dynamic mechanical analysis (DMA) found Tg as 82 °C. The rheology indicated that PETG CF30% is a good printing material at 220-250 °C. Bending experiments show an average of 48.5 MPa for flexure strength, while tensile experiments found an average tensile strength of 25.0 MPa at room temperature. Comparison with 3D-printed PLA and PETG from the literature demonstrated that LFAM-printed PETG CF30% had a comparative high Young's modulus and had similar tensile strength. For design purposes, prints from LFAM should consider both material choice and print parameters, especially when considering large layer heights.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Polymers (Basel) Ano de publicação: 2024 Tipo de documento: Article