Sol-gel transition effect based on konjac glucomannan thermosensitive hydrogel for photo-assisted uranium extraction.
Sci Bull (Beijing)
; 69(19): 3042-3054, 2024 Oct 15.
Article
em En
| MEDLINE
| ID: mdl-39030103
ABSTRACT
Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium, which is expected to solve the difficulty in separation and the poor selectivity of traditional photocatalysts in carbonate-containing uranium wastewater. In this paper, the γ-FeOOH/konjac glucomannan grafted with phenolic hydroxyl groups/poly-N-isopropylacrylamide (γ-FeOOH/KGM(Ga)/PNIPAM) thermosensitive hydrogel is proposed as the photocatalysts for extracting uranium from carbonate-containing uranium wastewater. The dynamic phase transformation is demonstrated to confirm the arbitrary transition of γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel from a dispersed state with a high specific surface area at low temperatures to a stable aggregated state at high temperatures. Notably, the γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel achieves a remarkably high rate of 92.3% in the removal of uranium from the wastewater containing carbonates and maintains the efficiency of uranium removal from uranium mine wastewater at over 90%. Relying on electron spin resonance and free radical capture experiment, we reveal the adsorption-reduction-nucleation-crystallization mechanism of uranium on γ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel. Overall, this strategy provides a promising solution to treating uranium-contaminated wastewater, showing a massive potential in water purification.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Sci Bull (Beijing)
Ano de publicação:
2024
Tipo de documento:
Article