Catalytic Aerobic Carbooxygenation for the Construction of Vicinal Tetrasubstituted Centers: Application to the Synthesis of Hexasubstituted γ-Lactones.
Angew Chem Int Ed Engl
; 63(36): e202405876, 2024 Sep 02.
Article
em En
| MEDLINE
| ID: mdl-39031750
ABSTRACT
Strategic design for the construction of contiguous tetrasubstituted carbon centers represents a daunting challenge in synthetic organic chemistry. Herein, we report a combined experimental and computational investigation aimed at developing catalytic aerobic carbooxygenation, involving the intramolecular addition of tertiary radicals to geminally disubstituted alkenes, followed by aerobic oxygenation. This reaction provides a straightforward route to various α,α,ß,ß-tetrasubstituted γ-lactones, which can be readily transformed into hexasubstituted γ-lactones through allylation/translactonization. Computational analysis reveals that the key mechanistic foundation for achieving the developed aerobic carbooxygenation involves the design of endothermic (energetically uphill) C-C bond formation followed by exothermic (energetically downhill) oxygenation. Furthermore, we highlight a unique fluorine-induced stereoelectronic effect that stabilizes the endothermic stereodetermining transition state.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Ano de publicação:
2024
Tipo de documento:
Article