Your browser doesn't support javascript.
loading
A user-friendly machine learning approach for cardiac structures assessment.
Orhan, Atilla; Akbayrak, Hakan; Çiçek, Ömer Faruk; Harmankaya, Ismail; Vatansev, Hüsamettin.
Afiliação
  • Orhan A; Department of Cardiovascular Surgery, Faculty of Medicine, Selcuk University, Konya, Türkiye.
  • Akbayrak H; Department of Cardiovascular Surgery, Faculty of Medicine, Selcuk University, Konya, Türkiye.
  • Çiçek ÖF; Department of Cardiovascular Surgery, Faculty of Medicine, Selcuk University, Konya, Türkiye.
  • Harmankaya I; Department of Pathology, Faculty of Medicine, Selcuk University, Konya, Türkiye.
  • Vatansev H; Department of Biochemistry, Faculty of Medicine, Selcuk University, Konya, Türkiye.
Front Cardiovasc Med ; 11: 1426888, 2024.
Article em En | MEDLINE | ID: mdl-39036503
ABSTRACT

Background:

Machine learning is increasingly being used to diagnose and treat various diseases, including cardiovascular diseases. Automatic image analysis can expedite tissue analysis and save time. However, using machine learning is limited among researchers due to the requirement of technical expertise. By offering extensible features through plugins and scripts, machine-learning platforms make these techniques more accessible to researchers with limited programming knowledge. The misuse of anabolic-androgenic steroids is prevalent, particularly among athletes and bodybuilders, and there is strong evidence of their detrimental effects on ventricular myocardial capillaries and muscle cells. However, most studies rely on qualitative data, which can lead to bias and limited reliability. We present a user-friendly approach using machine learning algorithms to measure the effects of exercise and anabolic-androgenic steroids on cardiac ventricular capillaries and myocytes in an experimental animal model.

Method:

Male Wistar rats were divided into four groups (n = 28) control, exercise-only, anabolic-androgenic steroid-alone, and exercise with anabolic-androgenic steroid. Histopathological analysis of heart tissue was conducted, with images processed and analyzed using the Trainable Weka Segmentation plugin in Fiji software. Machine learning classifiers were trained to segment capillary and myocyte nuclei structures, enabling quantitative morphological measurements.

Results:

Exercise significantly increased capillary density compared to other groups. However, in the exercise + anabolic-androgenic steroid group, steroid use counteracted this effect. Anabolic-androgenic steroid alone did not significantly impact capillary density compared to the control group. Additionally, the exercise group had a significantly shorter intercapillary distance than all other groups. Again, using steroids in the exercise + anabolic-androgenic steroid group diminished this positive effect.

Conclusion:

Despite limited programming skills, researchers can use artificial intelligence techniques to investigate the adverse effects of anabolic steroids on the heart's vascular network and muscle cells. By employing accessible tools like machine learning algorithms and image processing software, histopathological images of capillary and myocyte structures in heart tissues can be analyzed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2024 Tipo de documento: Article