Your browser doesn't support javascript.
loading
Towards the 10-Year Milestone of Monolithic Perovskite/Silicon Tandem Solar Cells.
Ying, Zhiqin; Yang, Xi; Wang, Xuezhen; Ye, Jichun.
Afiliação
  • Ying Z; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China.
  • Yang X; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China.
  • Wang X; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China.
  • Ye J; Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China.
Adv Mater ; 36(37): e2311501, 2024 Sep.
Article em En | MEDLINE | ID: mdl-39049723
ABSTRACT
The perovskite/silicon tandem solar cell represents one of the most promising avenues for exceeding the Shockley-Queisser limit for single-junction solar cells at a reasonable cost. Remarkably, its efficiency has rapidly increased from 13.7% in 2015 to 34.6% in 2024. Despite the significant research efforts dedicated to this topic, the "secret" to achieving high-performance perovskite/silicon tandem solar cells seems to be confined to a few research groups. Additionally, the discrepancies in preparation and characterization between single-junction and tandem solar cells continue to impede the transition from efficient single-junction to efficient tandem solar cells. This review first revisits the key milestones in the development of monolithic perovskite/silicon tandem solar cells over the past decade. Then, a comprehensive analysis of the background, advancements, and challenges in perovskite/silicon tandem solar cells is provided, following the sequence of the tandem fabrication process. The progress and limitations of the prevalent stability measurements for tandem devices are also discussed. Finally, a roadmap for designing efficient, scalable, and stable perovskite/silicon tandem solar cells is outlined. This review takes the growth history into consideration while charting the future course of perovskite/silicon tandem research.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article