Your browser doesn't support javascript.
loading
Microfluidic-Assisted Self-Assembly of Molecular Hydrogelator at Water-Water Interfaces for Continuous Fabrication of Supramolecular Microcapsules.
Li, Zhongqi; Wang, Hucheng; Gao, Yuliang; Chen, Jingjing; Gu, Guanyao; Liu, Jing; Chen, Yuqian; Guo, Xuhong; Wang, Yiming.
Afiliação
  • Li Z; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Wang H; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Gao Y; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Chen J; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Gu G; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Liu J; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Chen Y; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Guo X; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
  • Wang Y; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Small ; : e2403085, 2024 Jul 25.
Article em En | MEDLINE | ID: mdl-39051965
ABSTRACT
Control over the self-assembly of small molecules at specific areas is of great interest for many high-tech applications, yet remains a formidable challenge. Here, how the self-assembly of hydrazone-based molecular hydrogelators can be specifically triggered at water-water interfaces for the continuous fabrication of supramolecular microcapsules by virtue of the microfluidic technique is demonstrated. The non-assembling hydrazide- and aldehyde-based hydrogelator precursors are distributed in two immiscible aqueous polymer solutions, respectively, through spontaneous phase separation. In the presence of catalysts, hydrazone-based hydrogelators rapidly form and self-assemble into hydrogel networks at the generated water-water interfaces. Relying on the microfluidic technique, microcapsules bearing a shell of supramolecular hydrogel are continuously produced. The obtained microcapsules can effectively load enzymes, enabling localized enzymatic growth of supramolecular fibrous supramolecular structures, reminiscent of the self-assembly of biological filaments within living cells. This work may contribute to the development of biomimetic supramolecular carriers for applications in biomedicine and fundamental research, for instance, the construction of protocells.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Ano de publicação: 2024 Tipo de documento: Article