Your browser doesn't support javascript.
loading
Cascade Förster resonance energy transfer between layered silicate edge-linked chromophores.
Xiang, Hongxiao; Hill, Eric H.
Afiliação
  • Xiang H; Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
  • Hill EH; Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany. Electronic address: eric.hill@uni-hamburg.de.
J Colloid Interface Sci ; 676: 543-550, 2024 Dec 15.
Article em En | MEDLINE | ID: mdl-39053402
ABSTRACT
Förster resonance energy transfer (FRET) serves as a critical mechanism to study intermolecular interactions and the formation of macromolecular assemblies. Cascade FRET is a multi-step FRET process which can overcome limitations associated with traditional single-step FRET. Herein, a novel organic-inorganic hybrid composed of a nile red derivative attached to the edge of the layered silicate clay Laponite (Lap-NR) was used to facilitate cascade FRET between Laponite sheets. Utilizing naphthalene-diimide edge-modified Laponite (Lap-NDI) as the initial donor, Rhodamine 6G on the basal surface of Laponite as the first acceptor, and Lap-NR as the second acceptor, cascade FRET was achieved. The influence of solvent composition in a DMF/water mixture on cascade FRET was investigated, revealing that a higher water content led to an enhancement of the cascade FRET process, which is attributed to increased aggregation-induced emission of Lap-NDI and the enhanced quantum yield of R6G in water. This study provides a unique approach to achieve cascade FRET by taking advantage of the anisotropic surface chemistry of a two-dimensional nanomaterial, providing a colloidally-driven alternative with improved tunability compared to macromolecular routes. The flexibility and simplicity of this approach will advance the state of the art of organic-inorganic hybrids for applications in optoelectronics, sensors, and hybrid photovoltaics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Ano de publicação: 2024 Tipo de documento: Article