Your browser doesn't support javascript.
loading
Iron-Reduced Graphene Oxide Core-Shell Micromotors Designed for Magnetic Guidance and Photothermal Therapy under Second Near-Infrared Light.
Donoso-González, Orlando; Riveros, Ana L; Marco, José F; Venegas-Yazigi, Diego; Paredes-García, Verónica; Olguín, Camila F; Mayorga-Lobos, Cristina; Lobos-González, Lorena; Franco-Campos, Felipe; Wang, Joseph; Kogan, Marcelo J; Bollo, Soledad; Yañez, Claudia; Báez, Daniela F.
Afiliação
  • Donoso-González O; Departamento Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.
  • Riveros AL; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.
  • Marco JF; Departamento Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.
  • Venegas-Yazigi D; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.
  • Paredes-García V; Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain.
  • Olguín CF; Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Libertador Bernardo O'Higgins #3363, Estación Central, Santiago 9170022, Chile.
  • Mayorga-Lobos C; Centro para el Desarrollo de La Nanociencia y la Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Libertador Bernardo O'Higgins #3363, Estación Central, Santiago 9170022, Chile.
  • Lobos-González L; Centro para el Desarrollo de La Nanociencia y la Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Libertador Bernardo O'Higgins #3363, Estación Central, Santiago 9170022, Chile.
  • Franco-Campos F; Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 275, Santiago, Santiago 8370146, Chile.
  • Wang J; Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile.
  • Kogan MJ; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone #1007, Independencia, Santiago 8380492, Chile.
  • Bollo S; Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile.
  • Yañez C; Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago 8380492, Chile.
  • Báez DF; Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile.
Pharmaceutics ; 16(7)2024 Jun 25.
Article em En | MEDLINE | ID: mdl-39065553
ABSTRACT
Core-shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core-shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core-shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL-1. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core-shell micromotors could hold great potential for combined photothermal therapy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmaceutics Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Pharmaceutics Ano de publicação: 2024 Tipo de documento: Article