Your browser doesn't support javascript.
loading
Computational assessment of the radical scavenging activity of cleomiscosin.
Nguyen, Trung Quang; Mechler, Adam; Vo, Quan V.
Afiliação
  • Nguyen TQ; The University of Danang - University of Science and Education Da Nang 550000 Vietnam.
  • Mechler A; Quality Assurance and Testing Center 2 Da Nang 550000 Vietnam.
  • Vo QV; Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia.
RSC Adv ; 14(33): 23629-23637, 2024 Jul 26.
Article em En | MEDLINE | ID: mdl-39077313
ABSTRACT
Coumarinolignans such as cleomiscosin A (CMA), cleomiscosin B (CMB), and cleomiscosin C (CMC) are secondary metabolites that were isolated from diverse plant species. Cleomiscosins (CMs) have numerous interesting biological activities, including noteworthy cytotoxicity of cancer cell lines along with hepatoprotective and assumed antioxidant activities. In this present study, the antioxidant properties of three cleomiscosins were investigated with a focus on the structure-activity relationship using thermodynamic and kinetic calculations with the M06-2X/6-311++G(d,p) method. The results show that CMs, including CMA, CMB, and CMC, are weak antioxidants in apolar environments, with k overall of 7.52 × 102 to 6.28 × 104 M-1 s-1 for the HOO˙ radical scavenging reaction in the gas phase and 3.47 × 102 to 6.44 × 104 M-1 s-1 in pentyl ethanoate. Remarkably, the difference in the fusion of phenylpropanoid structure with coumarin via two ortho-hydroxyl groups (CMA and CMB) does not cause any noticeable effect on their antioxidant activity, while the presence of a methoxy substitute on the aromatic ring of phenylpropanoid units (CMC) increases the reaction rate to about 61 to 84 times faster than that of CMA. In contrast, the studied CMs exhibit a good antioxidant capacity in polar environments, with a k overall range from 4.03 × 107 to 8.66 × 107 M-1 s-1, 102-103 times faster than that of Trolox, equal to that of ascorbic acid and resveratrol. The angular fusion of the phenylpropanoid and coumarin structures, as well as the methoxy substitution on the aromatic ring of the phenylpropanoid unit of the studied CMs, do not have any considerable effect on their antioxidant activity under the studied conditions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: RSC Adv Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: RSC Adv Ano de publicação: 2024 Tipo de documento: Article