Your browser doesn't support javascript.
loading
Accounting for the Quantum Capacitance of Graphite in Constant Potential Molecular Dynamics Simulations.
Goloviznina, Kateryna; Fleischhaker, Johann; Binninger, Tobias; Rotenberg, Benjamin; Ers, Heigo; Ivanistsev, Vladislav; Meissner, Robert; Serva, Alessandra; Salanne, Mathieu.
Afiliação
  • Goloviznina K; CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France.
  • Fleischhaker J; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France.
  • Binninger T; CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France.
  • Rotenberg B; Institute of Polymers and Composites, Hamburg University of Technology, 21073, Hamburg, Germany.
  • Ers H; ICGM, Univ Montpellier, CNRS, ENSCM, 34293, Montpellier, France.
  • Ivanistsev V; Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
  • Meissner R; CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France.
  • Serva A; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France.
  • Salanne M; University of Tartu, Ravila 14a, Tartu, 51004, Estonia.
Adv Mater ; : e2405230, 2024 Aug 03.
Article em En | MEDLINE | ID: mdl-39096068
ABSTRACT
Molecular dynamics (MD) simulations at a constant electric potential are an essential tool to study electrochemical processes, providing microscopic information on the structural, thermodynamic, and dynamical properties. Despite the numerous advances in the simulation of electrodes, they fail to accurately represent the electronic structure of materials such as graphite. In this work, a simple parameterization method that allows to tune the metallicity of the electrode based on a quantum chemistry calculation of the density of states (DOS) is introduced. As a first illustration, the interface between graphite electrodes and two different liquid electrolytes, an aqueous solution of NaCl and a pure ionic liquid, at different applied potentials are studied. It is shown that the simulations reproduce qualitatively the experimentally-measured capacitance; in particular, they yield a minimum of capacitance at the point of zero charge (PZC), which is due to the quantum capacitance (QC) contribution. An analysis of the structure of the adsorbed liquids allows to understand why the ionic liquid displays a lower capacitance despite its large ionic concentration. In addition to its relevance for the important class of carbonaceous electrodes, this method can be applied to any electrode materials (e.g. 2D materials, conducting polymers, etc), thus enabling molecular simulation studies of complex electrochemical devices in the future.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Ano de publicação: 2024 Tipo de documento: Article