Anti-microbial, anti-biofilm, and efflux pump inhibitory effects of ellagic acid-bonded magnetic nanoparticles against Escherichia coli isolates.
Int Microbiol
; 2024 Aug 06.
Article
em En
| MEDLINE
| ID: mdl-39105888
ABSTRACT
The spread of microbial resistance is a threat to public health. In this study, the anti-microbial, anti-biofilm, and efflux pump inhibitory effects of ellagic acid-loaded magnetic nanoparticles (Fe3O4NPs@EA) against beta-lactamase producing Escherichia coli isolates have been investigated. The effects of Fe3O4 NPs@EA on the growth inhibition of E. coli isolates were determined by disc diffusion method and determining the minimum inhibitory concentration was done using broth micro-dilution method. The anti-biofilm effect of nanoparticles was investigated using the microplate method. The efflux pump inhibitory effect of nanoparticles was investigated using cart-wheel method and by investigating the effect of nanoparticles on acrB and tolC genes expression levels. Fe3O4 NPs@EA showed anti-bacterial effects against test bacteria, and the MIC of these nanoparticles varied from 0.19 to 1.56 mg/mL. These nanoparticles caused a 43-62% reduction in biofilm formation of test bacteria compared to control. Furthermore, efflux pump inhibitory effect of these nanoparticles was confirmed at a concentration of 1/8 MIC, and the expression of acrB and tolC genes decreased in bacteria treated with 1/4 MIC Fe3O4 NPs@EA. According to the results, the use of nanoparticles containing ellagic acid can provide a basis for the development of new treatments against drug-resistant E. coli. This substance may improve the concentration of antibiotics in the bacterial cell and increase their effectiveness by inhibiting the efflux in E. coli isolates.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Int Microbiol
Ano de publicação:
2024
Tipo de documento:
Article