Your browser doesn't support javascript.
loading
Do all ceramic and composite CAD-CAM materials exhibit equal bonding properties to implant Ti-base materials? An Interfacial Fracture Toughness Study.
Karevan, Yousef; Eldafrawy, Maher; Herman, Raphael; Sanchez, Christelle; Sadoun, Michaël; Mainjot, Amélie.
Afiliação
  • Karevan Y; Dental Biomaterials Research Unit (d-BRU), Institute of Dentistry, University of Liège (ULiège), Liège, Belgium.
  • Eldafrawy M; Dental Biomaterials Research Unit (d-BRU), Institute of Dentistry, University of Liège (ULiège), Liège, Belgium.
  • Herman R; Dental Biomaterials Research Unit (d-BRU), Institute of Dentistry, University of Liège (ULiège), Liège, Belgium.
  • Sanchez C; Department of Fixed Prosthodontics, Institute of Dentistry, University of Liège Hospital (CHU), Liège, Belgium.
  • Sadoun M; MaJEB sprl, Liège, Belgium.
  • Mainjot A; Department of Fixed Prosthodontics, Institute of Dentistry, University of Liège Hospital (CHU), Liège, Belgium. Electronic address: a.mainjot@chuliege.be.
Dent Mater ; 2024 Aug 05.
Article em En | MEDLINE | ID: mdl-39107223
ABSTRACT

OBJECTIVES:

To compare the interfacial fracture toughness (IFT) with or without aging, of four different classes of CAD-CAM ceramic and composite materials bonded with self-adhesive resin cement to titanium alloy characteristic of implant abutments.

METHODS:

High translucent zirconia (Katana; KAT), lithium disilicate-based glass-ceramic (IPS. emax.CAD; EMX), polymer-infiltrated ceramic network material (PICN) (Vita Enamic; ENA), and dispersed filler composite (Cerasmart 270; CER) were cut into equilateral triangular prisms and bonded to titanium prisms with identical dimensions using Panavia SA Cement Universal. The surfaces were pretreated following the manufacturers' recommendations and developed interfacial area ratio (Sdr) of the pretreated surfaces was measured. IFT was determined using the Notchless Triangular Prism test in a water bath at 36 °C before and after thermocycling (10,000 cycles) (n = 40 samples/material).

RESULTS:

IFT of the materials ranged from 0.80 ± 0.25 to 1.10 ± 0.21 MPa.m1/2 before thermocycling and from 0.71 ± 0.24 to 1.02 ± 0.25 MPa.m1/2 after thermocycling. There was a statistical difference between IFT of CER and the two top performers in each scenario KAT and EMX before aging, and KAT and ENA after aging. Thermocycling significantly decreased IFT of EMX. The Weibull modulus of IFT was similar for all materials and remained so after thermocycling. Sdr measurements revealed that ENA (7.60)>Ti (4.97)>CER (2.85)>KAT (1.09)=EMX (0.96).

SIGNIFICANCE:

Dispersed filler CAD-CAM composite showed lower performance than the other materials. Aging only affected IFT of Li-Si glass-ceramic, whereas zirconia and PICN performed equally well, probably due to their chemical bonding potential and surface roughness respectively.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Dent Mater Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Dent Mater Ano de publicação: 2024 Tipo de documento: Article