Your browser doesn't support javascript.
loading
Lacticaseibacillus rhamnosus inhibits the development of dental caries in rat caries model and in vitro.
Chen, Yanyan; Hao, Yu; Chen, Jing; Han, Qi; Wang, Zheng; Peng, Xian; Cheng, Lei.
Afiliação
  • Chen Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Department of Stomatol
  • Hao Y; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
  • Chen J; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
  • Han Q; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
  • Wang Z; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
  • Peng X; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address: pe
  • Cheng L; State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address: ch
J Dent ; 149: 105278, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39111536
ABSTRACT

OBJECTIVES:

Dental caries result from a microbial imbalance in the oral cavity. Probiotics ecologically modulate the oral microflora to prevent caries. This study evaluated the anti-cariogenic effects of two Lacticaseibacillus rhamnosus strains in vitro and in vivo to provide a more theoretical basis for its clinical applications in caries prevention.

METHODS:

In the study, cariogenic biofilms were grown with L. rhamnosus (LGG) or L. rhamnosus ATCC 7469 and analyzed. Quantitative real-time PCR (qPCR), Scanning Electron Microscope (SEM), and Confocal laser scanning microscope (CLSM) were used to detect the changes in the composition and architectures; cariogenic activity was measured by the lactic acid production and Transverse Microradiography (TMR). The effects of LGG on the 12 Sprague-Dawley rat caries model were assessed using Keyes scores and micro-CT analysis. Oral microbiome changes were evaluated through 16S rRNA gene high-throughput sequencing.

RESULTS:

L. rhamnosus can reduce cariogenic bacteria in biofilm by 14.7 % to 48.9 %, with LGG exhibiting more potent inhibitory effects. Both strains of L. rhamnosus can adhere to the surface of biofilms, reduce the extracellular polysaccharides (EPS) matrix, and loosen the biofilm structure. L. rhamnosus inhibited cariogenic activity by reducing the lactic acid production in biofilms. The bovine enamel blocks presented lower mineral loss values and lesion depth values in the group Core+L.rh and Core+LGG. LGG-ingested rats had significantly lower levels of moderate dentin lesions and higher mineral density than the control group. The 16 s rRNA gene sequencing revealed that LGG regulated the beta diversity of the oral microbial community in the rat dental caries model.

CONCLUSIONS:

This study revealed the promising potential of L. rhamnosus, especially the LGG strain, in the ecological prevention of dental caries. CLINICAL

SIGNIFICANCE:

Probiotics may provide a strategy for preventing caries by regulating the oral microecological balance. The study revealed the promising anti-caries potential of the LGG probiotic strain in vivo and in vitro. It is expected that LGG could be used as an oral probiotic for the clinical prevention and treatment of caries.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ratos Sprague-Dawley / Biofilmes / Probióticos / Cárie Dentária / Modelos Animais de Doenças / Lacticaseibacillus rhamnosus Limite: Animals Idioma: En Revista: J Dent Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ratos Sprague-Dawley / Biofilmes / Probióticos / Cárie Dentária / Modelos Animais de Doenças / Lacticaseibacillus rhamnosus Limite: Animals Idioma: En Revista: J Dent Ano de publicação: 2024 Tipo de documento: Article