Your browser doesn't support javascript.
loading
Urbanization impacts on evapotranspiration change across seven typical urban agglomerations in China.
Xing, Wanqiu; Feng, Zhiyu; Cao, Xin; Fu, Jianyu; Wang, Weiguang.
Afiliação
  • Xing W; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China. Ele
  • Feng Z; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
  • Cao X; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
  • Fu J; School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China.
  • Wang W; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, China.
Sci Total Environ ; 950: 175399, 2024 Aug 08.
Article em En | MEDLINE | ID: mdl-39127211
ABSTRACT
Evaluating the differences in evapotranspiration between urban and surrounding non-urban areas (i.e., ∆ET) has critical implications for urban ecological planning and water resources management. However, it is unclear how the magnitude of changes in ∆ET caused by urbanization varies under different climatic conditions in China. Here, using the remotely ET estimates at 1 km spatial resolution, we firstly estimated the magnitude of changes in ∆ET and then quantified the main driving factors influencing variations in ∆ET of 7 national-level urban agglomerations (UAs) across China during 2003-2020. Results showed that all annual ETurban values were smaller than ETnon-urban of 7 UAs, and the absolute ∆ET values of cities in South China were generally higher than those in North China. There is an apparent effect of urbanization on ∆ET increase in Guanzhong Plain City Group, Central Plain UA and Guangdong-Hong Kong-Macao Greater Bay Area (GHKMGBA), while ∆ET decrease in Chengdu-Chongqing City Group and Yangtze River Delta (YRDUA) were primarily due to the climate change. The suppressing effects of temperature and NDVI on ∆ET decrease in YRDUA were enhanced, and the promoting effect of GDP on ∆ET increase in GHKMGBA was weakened. Considering nonstationary features, urbanization appears to heighten extreme ∆ET by 0.83 %, 4.83 % and 10.39 % under 5-year, 20-year, and 50-year return periods over all the 7 UAs, respectively. Collectively, our findings confirm that urbanization is a significant factor that leads to ∆ET increase, and the factors affecting the response of urban water circulation system need to be deeply decomposed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article