Your browser doesn't support javascript.
loading
Metal complexes featuring a quinazoline schiff base ligand and glycine: synthesis, characterization, DFT and molecular docking analyses revealing their potent antibacterial, anti-helicobacter pylori, and Anti-COVID-19 activities.
Mansour, M S A; Abdelkarim, Abeer T; El-Sherif, Ahmed A; Mahmoud, Walaa H.
Afiliação
  • Mansour MSA; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
  • Abdelkarim AT; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
  • El-Sherif AA; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
  • Mahmoud WH; Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt. wmahmoud@sci.cu.edu.eg.
BMC Chem ; 18(1): 150, 2024 Aug 10.
Article em En | MEDLINE | ID: mdl-39127681
ABSTRACT
Mixed ligand complexes of manganese(II), cobalt(II), copper(II), and cadmium(II)with an innovative Schiff base ligand denoted as (L1), 4-(2-((1E,2E)-1-(2-(p-tolyl)hydrazineylidene)propan-2-ylidene)hydrazineyl), served as the principal ligand, while glycine (L2) was employed as secondary ligand were successfully effectively characterized through a comprehensive set of analyses, including Elemental analysis, UV-Visible, FT-IR, Mass spectra, and conductometric measurements. Density functional theory (DFT) computations were executed to discern the enduring electronic arrangement, the energy gap, dipole moment and chemical hardness of the hybrid ligand assemblies. The proposed geometry for the complexes is a distorted octahedral structure. The antimicrobial efficacy of these compounds was assessed against a range of bacterial and fungal strains. Notably, these complexes exhibited promising antimicrobial activities, with the cadmium (II) complex demonstrating superior efficacy towards all tested organisms. These compounds were also examined for their antibiotic properties against H. pylori to explore their broader medical potential. The Schiff base ligand and its corresponding metal complexes displayed substantial potential as an antibiotic against H. pylori. Additionally, the antitumor potential of the synthesized complexes was assessed against MCF-7 (Breast carcinoma) cells-the Cu (II) complex demonstrated superior activity with the lowest IC50 value compared to cisplatin. Moreover, it exhibited reduced cytotoxicity towards normal cells (VERO cells) compared to cisplatin, establishing it as the most potent compound in the study. Furthermore, molecular docking was explored of the Schiff base ligand and its corresponding cadmium(II) complex. The analysis of the docking study yielded valuable structural insights that can be effectively utilized in conducting inhibition studies for example against COVID-19. This comprehensive study highlights these synthesized compounds' multifaceted applications and promising bioactive properties.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BMC Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BMC Chem Ano de publicação: 2024 Tipo de documento: Article