Your browser doesn't support javascript.
loading
Role of 6mA in the Regulation of Metabolic Biosynthesis in Sorghum Callus.
Tian, Kewei; Liu, Chang; Cai, Yanjun; Zhou, Chao.
Afiliação
  • Tian K; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
  • Liu C; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
  • Cai Y; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
  • Zhou C; Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
J Agric Food Chem ; 72(34): 19232-19245, 2024 Aug 28.
Article em En | MEDLINE | ID: mdl-39138187
ABSTRACT
Plant cell culture technology helps to obtain natural plant-derived metabolites. The callus of sorghum, a prominent cereal crop, possesses various metabolites with potential health benefits. However, the epigenetic mechanism regulating metabolic biosynthetic capabilities in sorghum remains unknown. Therefore, we conducted N6-methyladenine (6mA) methylome analysis using transcriptome profiling and metabolome analysis to investigate the role of 6mA alterations in two calluses having different biosynthetic capacities, which were derived from immature sorghum embryos. Our findings indicate that the 6mA upregulation within gene bodies is crucial in transcriptional activity potentially mediated by the DNA demethylase SbALKBH1. Furthermore, 6mA was significantly enriched in genes involved in the biosynthesis of flavonoids and isoflavonoids. This could serve as a novel source of bioactive compounds for human health. Thus, 6mA could play an essential role in flavonoid biosynthesis in the sorghum callus.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Flavonoides / Regulação da Expressão Gênica de Plantas / Sorghum Idioma: En Revista: J Agric Food Chem Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Flavonoides / Regulação da Expressão Gênica de Plantas / Sorghum Idioma: En Revista: J Agric Food Chem Ano de publicação: 2024 Tipo de documento: Article