Near-infrared photoimmunotherapy as a complementary modality to in situ vaccine in a preclinical pancreatic cancer model.
Biochem Biophys Res Commun
; 737: 150534, 2024 Aug 08.
Article
em En
| MEDLINE
| ID: mdl-39142137
ABSTRACT
Pancreatic cancer is one of the most refractory malignancies. In situ vaccines (ISV), in which intratumorally injected immunostimulatory adjuvants activate innate immunity at the tumor site, utilize tumor-derived patient-specific antigens, thereby allowing for the development of vaccines in patients themselves. Near-infrared photoimmunotherapy (NIR-PIT) is a novel therapy that selectively kills cancer cells exclusively in the NIR-irradiated region. Extending our previous research showing that ISV using the unique nanoparticulate Toll-like receptor 9 (TLR9) ligand K3-SPG induced effective antitumor immunity, here we incorporated NIR-PIT into K3-SPG-ISV so that local tumor destruction by NIR-PIT augments the antitumor effect of ISV. In the mouse model of pancreatic cancer, the combination of K3-SPG-ISV and CD44-targeting NIR-PIT showed synergistic systemic antitumor effects and enhanced anti-programmed cell death-1 (PD-1) blockade. Mechanistically, strong intratumoral upregulation of interferon-related genes and dependency on CD8+ T cells were observed, suggesting the possible role of interferon and cytotoxic T cell responses in the induction of antitumor immunity. Importantly, this combination induced immunological memory in therapeutic and neoadjuvant settings. This study represents the first attempt to integrate NIR-PIT with ISV, offering a promising new direction for cancer immunotherapy, particularly for pancreatic cancer.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Biochem Biophys Res Commun
Ano de publicação:
2024
Tipo de documento:
Article