Your browser doesn't support javascript.
loading
Repeated exposure to novelty promotes resilience against the amyloid-beta effect through dopaminergic stimulation.
Velázquez-Delgado, Cintia; Hernández-Ortiz, Eduardo; Landa-Navarro, Lucia; Tapia-Rodríguez, Miguel; Moreno-Castilla, Perla; Bermúdez-Rattoni, Federico.
Afiliação
  • Velázquez-Delgado C; División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
  • Hernández-Ortiz E; División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
  • Landa-Navarro L; División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
  • Tapia-Rodríguez M; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
  • Moreno-Castilla P; Laboratory of Cognitive Resilience, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico. perla.moreno.c@cinvestav.mx.
  • Bermúdez-Rattoni F; División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. bermudez@unam.mx.
Article em En | MEDLINE | ID: mdl-39145803
ABSTRACT
RATIONALE The accumulation of beta-amyloid peptide (Aß) in the forebrain leads to cognitive dysfunction and neurodegeneration in Alzheimer's disease. Studies have shown that individuals with a consistently cognitively active lifestyle are less vulnerable to Aß toxicity. Recent research has demonstrated that intrahippocampal Aß can impact catecholaminergic release and spatial memory. Interestingly, exposure to novelty stimuli has been found to stimulate the release of catecholamines in the hippocampus. However, it remains uncertain whether repeated enhancing catecholamine activity can effectively alleviate cognitive impairment in individuals with Alzheimer's disease.

OBJECTIVES:

Our primary aim was to investigate whether repeated exposure to novelty could enable cognitive resilience against Aß. This protection could be achieved by modulating catecholaminergic activity within the hippocampus.

METHODS:

To investigate this hypothesis, we subjected mice to three different conditions-standard housing (SH), repeated novelty (Nov), or daily social interaction (Soc) for one month. We then infused saline solution (SS) or Aß (Aß1-42) oligomers intrahippocampally and measured spatial memory retrieval in a Morris Water Maze (MWM). Stereological analysis and extracellular baseline dopamine levels using in vivo microdialysis were assessed in independent groups of mice.

RESULTS:

The mice that received Aß1-42 intrahippocampal infusions and remained in SH or Soc conditions showed impaired spatial memory retrieval. In contrast, animals subjected to the Nov protocol demonstrated remarkable resilience, showing strong spatial memory expression even after Aß1-42 intrahippocampal infusion. The stereological analysis indicated that the Aß1-42 infusion reduced the tyrosine hydroxylase axonal length in SH or Soc mice compared to the Nov group. Accordingly, the hippocampal extracellular dopamine levels increased significantly in the Nov groups.

CONCLUSIONS:

These compelling results demonstrate the potential for repeated novelty exposure to strengthen the dopaminergic system and mitigate the toxic effects of Aß1-42. They also highlight new and promising therapeutic avenues for treating and preventing AD, especially in its early stages.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Psychopharmacology (Berl) Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Psychopharmacology (Berl) Ano de publicação: 2024 Tipo de documento: Article