Your browser doesn't support javascript.
loading
Rational design of base, sugar and backbone modifications improves ADAR-mediated RNA editing.
Lu, Genliang; Shivalila, Chikdu; Monian, Prashant; Yu, Hui; Harding, Ian; Briem, Stearne; Byrne, Michael; Faraone, Alyse; Friend, Stephen; Huth, Olivia; Iwamoto, Naoki; Kawamoto, Tomomi; Kumarasamy, Jayakanthan; Lamattina, Anthony; Longo, Kenneth; McCarthy, Leah; McGlynn, Andrew; Molski, Allison; Pan, Qianli; Pu, Tom; Purcell-Estabrook, Erin; Rossi, Jeff; Standley, Stephany; Thomas, Carina; Walen, Alexandra; Yang, Hailin; Kandasamy, Pachamuthu; Vargeese, Chandra.
Afiliação
  • Lu G; Wave Life Sciences, Cambridge, MA, USA.
  • Shivalila C; Wave Life Sciences, Cambridge, MA, USA.
  • Monian P; Wave Life Sciences, Cambridge, MA, USA.
  • Yu H; Wave Life Sciences, Cambridge, MA, USA.
  • Harding I; Wave Life Sciences, Cambridge, MA, USA.
  • Briem S; Wave Life Sciences, Cambridge, MA, USA.
  • Byrne M; Wave Life Sciences, Cambridge, MA, USA.
  • Faraone A; Wave Life Sciences, Cambridge, MA, USA.
  • Friend S; Wave Life Sciences, Cambridge, MA, USA.
  • Huth O; Wave Life Sciences, Cambridge, MA, USA.
  • Iwamoto N; Wave Life Sciences, Cambridge, MA, USA.
  • Kawamoto T; Wave Life Sciences, Cambridge, MA, USA.
  • Kumarasamy J; Wave Life Sciences, Cambridge, MA, USA.
  • Lamattina A; Wave Life Sciences, Cambridge, MA, USA.
  • Longo K; Wave Life Sciences, Cambridge, MA, USA.
  • McCarthy L; Wave Life Sciences, Cambridge, MA, USA.
  • McGlynn A; Wave Life Sciences, Cambridge, MA, USA.
  • Molski A; Wave Life Sciences, Cambridge, MA, USA.
  • Pan Q; Wave Life Sciences, Cambridge, MA, USA.
  • Pu T; Wave Life Sciences, Cambridge, MA, USA.
  • Purcell-Estabrook E; Wave Life Sciences, Cambridge, MA, USA.
  • Rossi J; Wave Life Sciences, Cambridge, MA, USA.
  • Standley S; Wave Life Sciences, Cambridge, MA, USA.
  • Thomas C; Wave Life Sciences, Cambridge, MA, USA.
  • Walen A; Wave Life Sciences, Cambridge, MA, USA.
  • Yang H; Wave Life Sciences, Cambridge, MA, USA.
  • Kandasamy P; Wave Life Sciences, Cambridge, MA, USA.
  • Vargeese C; Wave Life Sciences, Cambridge, MA, USA.
Nucleic Acids Res ; 2024 Aug 16.
Article em En | MEDLINE | ID: mdl-39149897
ABSTRACT
AIMers are short, chemically modified oligonucleotides that induce A-to-I RNA editing through interaction with endogenous adenosine deaminases acting on RNA (ADAR) enzymes. Here, we describe the development of new AIMer designs with base, sugar and backbone modifications that improve RNA editing efficiency over our previous design. AIMers incorporating a novel pattern of backbone and 2' sugar modifications support enhanced editing efficiency across multiple sequences. Further efficiency gains were achieved through incorporation of an N-3-uridine (N3U), in place of cytidine (C), in the 'orphan base' position opposite the edit site. Molecular modeling suggests that N3U might enhance ADAR catalytic activity by stabilizing the AIMer-ADAR interaction and potentially reducing the energy required to flip the target base into the active site. Supporting this hypothesis, AIMers containing N3U consistently enhanced RNA editing over those containing C across multiple target sequences and multiple nearest neighbor sequence combinations. AIMers combining N3U and the novel pattern of 2' sugar chemistry and backbone modifications improved RNA editing both in vitro and in vivo. We provide detailed N3U synthesis methods and, for the first time, explore the impact of N3U and its analogs on ADAR-mediated RNA editing efficiency and targetable sequence space.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2024 Tipo de documento: Article