Your browser doesn't support javascript.
loading
Increased anaerobic conditions promote the denitrifying nitrogen removal potential and limit anammox substrate acquisition within paddy irrigation and drainage units.
Du, Feile; Yin, Yinghua; Zhai, Limei; Zhang, Fulin; Wang, Shaopeng; Liu, Yilin; Fan, Xianpeng; Liu, Hongbin.
Afiliação
  • Du F; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Yin Y; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Zhai L; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Zhang F; Institute of Plant Protection, Soil and Fertilizer Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China.
  • Wang S; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Liu Y; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Fan X; Institute of Plant Protection, Soil and Fertilizer Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China.
  • Liu H; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
Sci Total Environ ; 951: 175616, 2024 Nov 15.
Article em En | MEDLINE | ID: mdl-39168324
ABSTRACT
Microbial nitrogen (N) removal is crucial for purifying surface water quality in paddy irrigation and drainage units (IDUs). However, the spatiotemporal microbial N removal potential characteristics within these IDUs and the effects of changing anaerobic conditions on this potential remain insufficiently studied. In this study, we investigated the microbial N removal potential of conventional rice-wheat rotation and anaerobically enhanced rice-crayfish rotation IDUs using field measurements, isotope tracing techniques, and quantitative PCR. Our findings reveal that paddy fields were identified as hotspots for anammox activity, contributing to 76.0 %-97.4 % of the total anammox N removal potential in the IDU, while denitrification processes in ditches accounted for 43.5 %-77.4 % of the IDU's denitrification potential. During the rice transplanting period, the anammox N removal potential peaked, representing 35.8 % and 71.8 % of the total anammox N removal potential of the paddy fields in rice-wheat and rice-crayfish IDUs, respectively. An increase in anaerobic conditions diminished the anammox N removal potential while amplifying denitrification capabilities. The N removal potential in paddy fields decreased with increasing depth, contrasting with the relative stability in ditches. Spatiotemporal fluctuations in N removal potentials within these units are influenced by Fe2+ concentration, carbon and N content, WFPS, and pH levels. This study provides a scientific basis for improving nitrogen removal and water quality treatment in IDUs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desnitrificação / Irrigação Agrícola / Nitrogênio Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desnitrificação / Irrigação Agrícola / Nitrogênio Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article