Your browser doesn't support javascript.
loading
Ex-situ single-culture biomethanation operated in trickle-bed configuration: Microbial H2 kinetics and stoichiometry for biogas conversion into renewable natural gas.
Ale Enriquez, Fuad; Ahring, Birgitte K.
Afiliação
  • Ale Enriquez F; Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA.
  • Ahring BK; Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA. Electronic address: bka@wsu.edu.
Bioresour Technol ; 411: 131330, 2024 Nov.
Article em En | MEDLINE | ID: mdl-39182797
ABSTRACT
Biomethanation converts carbon dioxide (CO2) emissions into renewable natural gas (RNG) using mixed microbial cultures enriched with hydrogenotrophic archaea. This study examines the performance of a single methanogenic archaeon converting biogas with added hydrogen (H2) into methane (CH4) using a trickle-bed bioreactor with enhanced gas-liquid mass transport. The process in continuous operation followed the theoretical reaction of hydrogenotrophic methanogenesis (CO2 + 4 H2 â†’ CH4 + 2 H2O), producing RNG with over 99 % CH4 and more than 0.9 H2 conversion efficiency. The Monod constants of H2 uptake were experimentally determined using kinetic modelling. Also, a dimensionless parameter was used to quantify the ratio between the H2 mass transfer rate and the maximum attainable H2 consumption rate. Single-culture biomethanation averts the formation of secondary metabolites and bicarbonate buffer interferences, resulting in lower demands for H2 than mixed-culture biomethanation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reatores Biológicos / Biocombustíveis / Gás Natural / Hidrogênio / Metano Idioma: En Revista: Bioresour Technol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reatores Biológicos / Biocombustíveis / Gás Natural / Hidrogênio / Metano Idioma: En Revista: Bioresour Technol Ano de publicação: 2024 Tipo de documento: Article