Your browser doesn't support javascript.
loading
Sediment water content drives movement of intertidal crab Helice tientsinensis more strongly than salinity variations.
Li, Xiaoxiao; Yang, Wei; Jiao, Le; Sun, Tao; Yang, Zhifeng.
Afiliação
  • Li X; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou,
  • Yang W; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China. Electronic address: yangwei@bnu.edu.cn.
  • Jiao L; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
  • Sun T; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China.
  • Yang Z; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou,
Mar Environ Res ; 201: 106711, 2024 Aug 27.
Article em En | MEDLINE | ID: mdl-39213893
ABSTRACT
Intertidal wetlands undergo dynamic water and salinity variations, creating both promising and challenging habitats for diverse organisms. Crabs respond strongly to these variations by means such as altering their movements, thereby restructuring their spatial distribution and influencing coastal ecosystem resilience. However, the movements of crabs under varying environmental conditions require further elucidation. We conducted a systematic mesocosm experiment using the ubiquitous intertidal crab species Helice tientsinensis with four amount levels and six salinity levels of sprayed water applied through a custom apparatus, with a primary focus on crab movement. Crab movement from the experimental side of the apparatus (with altered conditions) to the control side (resembling field conditions of the intertidal wetlands of China's Yellow River Delta) and vice versa was recorded. The results revealed significant differences in moving out of the experimental side and moving in among the different water and salinity conditions, both separately for the two factors and simultaneously. Decreases in water content had a more pronounced effect on crab movement, leading to an increased number of crabs moving out of the experimental side of the apparatus. Conversely, as the experimental side became wetter, crabs tended to move towards it, and this movement was intensified by increases or decreases in water salinity. A structural equation model revealed that the moving-out and moving-in played fundamental roles in determining the number of resident crabs at the end of each experiment. While crabs preferred moist sediment with lower salinity, changes in salinity alone had minimal direct effect compared to sediment water contents. Our results clarify crab movements under varying water and salinity conditions, offering valuable insights to support adaptive interventions for crab populations and inform adaptive conservation and management strategies in intertidal wetlands.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mar Environ Res Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Mar Environ Res Ano de publicação: 2024 Tipo de documento: Article