Your browser doesn't support javascript.
loading
In-Silico Method for Predicting Pathogenic Missense Variants Using Online Tools: AURKA Gene as a Model.
Maciel-Cruz, Eric Jonathan; Figuera-Villanueva, Luis Eduardo; Gómez-Flores-Ramos, Liliana; Hernández-Peña, Rubiceli; Gallegos-Arreola, Martha Patricia.
Afiliação
  • Maciel-Cruz EJ; Doctorado en Genética Humana, Instituto de Genética Humana "Dr. Enrique Corona Rivera", Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, Jalisco, México.
  • Figuera-Villanueva LE; División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.
  • Gómez-Flores-Ramos L; Doctorado en Genética Humana, Instituto de Genética Humana "Dr. Enrique Corona Rivera", Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, Jalisco, México.
  • Hernández-Peña R; División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.
  • Gallegos-Arreola MP; CONAHCYT- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
Iran J Biotechnol ; 22(2): e3787, 2024 Apr.
Article em En | MEDLINE | ID: mdl-39220333
ABSTRACT

Background:

In-silico analysis provides a fast, simple, and cost-free method for identifying potentially pathogenic single nucleotide variants.

Objective:

To propose a simple and relatively fast method for the prediction of variant pathogenicity using free online in-silico (IS) tools with AURKA gene as a model. Materials and

Methods:

We aim to propose a methodology to predict variants with high pathogenic potential using computational analysis, using AURKA gene as model. We predicted a protein model and analyzed 209 out of 64,369 AURKA variants obtained from Ensembl database. We used bioinformatic tools to predict pathogenicity. The results were compared through the VarSome website, which includes its own pathogenicity score and the American College of Medical Genetics (ACMG) classification.

Results:

Out of the 209 analyzed variants, 16 were considered pathogenic, and 13 were located in the catalytic domain. The most frequent protein changes were size and hydrophobicity modifications of amino acids. Proline and Glycine amino acid substitutions were the most frequent changes predicted as pathogenic. These bioinformatic tools predicted functional changes, such as protein up or down-regulation, gain or loss of molecule interactions, and structural protein modifications. When compared to the ACMG classification, 10 out of 16 variants were considered likely pathogenic, with 7 out of 10 changes at Proline/Glycine substitutions.

Conclusion:

This method allows quick and cost-free bulk variant screening to identify variants with pathogenic potential for further association and/or functional studies.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Iran J Biotechnol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Iran J Biotechnol Ano de publicação: 2024 Tipo de documento: Article