Ru incorporated into Se vacancy-containing CoSe2 as an efficient electrocatalyst for alkaline hydrogen evolution.
Nanoscale
; 16(39): 18421-18429, 2024 Oct 10.
Article
em En
| MEDLINE
| ID: mdl-39253762
ABSTRACT
In alkaline media, slow water dissociation leads to poor overall hydrogen evolution performance. However, Ru catalysts have a certain water dissociation performance, thus regulating the Ru-H bond through vacancy engineering and accelerating water dissociation. Herein, an excellent Ru-based electrocatalyst for the alkaline HER has been developed by incorporating Ru into Se vacancy-containing CoSe2 (Ru-VSe-CoSe2). The results from X-ray photoelectron spectroscopy, kinetic isotope effect, and cyanide poisoning experiments for four catalysts (namely Ru-VSe-CoSe2, Ru-CoSe2, VSe-CoSe2, and CoSe2) reveal that Ru is the main active site in Ru-VSe-CoSe2 and the presence of Se vacancies greatly facilitates electron transfer from Co to Ru via a bridging Se atom. Thus, electron-rich Ru is formed to optimize the adsorption strength between the active site and H*, and ultimately facilitates the whole alkaline HER process. Consequently, Ru-VSe-CoSe2 exhibits an excellent HER activity with an ultrahigh mass activity of 44.2 A mgRu-1 (20% PtC exhibits only 3 A mgRu-1) and a much lower overpotential (29 mV at 10 mA cm-2) compared to Ru-CoSe2 (75 mV), VSe-CoSe2 (167 mV), CoSe2 (190 mV), and commercial Pt/C (41 mV). In addition, the practical application of Ru-VSe-CoSe2 is illustrated by designing a Zn-H2O alkaline battery with Ru-VSe-CoSe2 as the cathode catalyst, and this battery shows its potential application with a maximum power density of 4.9 mW cm-2 and can work continuously for over 10 h at 10 mA cm-2 without an obvious decay in voltage.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanoscale
Ano de publicação:
2024
Tipo de documento:
Article