Resumo
Ruminant feed containing animal byproduct proteins (ABPs) is prohibited in many countries due to its risk of transmitting prion diseases (PD). In most cases the entire herd is sacrificed, which causes great harm to the producer countries by preventing their exportation of ruminant derived-products. Methods: We used stable isotope ratio mass spectrometry (IRMS) of carbon (13C/12C) and nitrogen (15N/14N) to trace the animal protein in the blood of 15 buffaloes (Bubalus bubalis) divided into three experimental groups: 1 - received only vegetable protein (VP) during 117 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets containing 13.7% bovine meat and bone meal (MBM) added to a vegetable diet (from days 21-117 in the AVP group and until day 47 in the AVPR group, when MBM was removed). Results: On the 36th day, differences were detectable in the feeding profile (p <0.01) among the three experimental groups, which remained for a further 49 days (85th day). The AVPR group showed isotopic rate reversibility on the 110th day by presenting values similar to those in the control group (VP) (p> 0.05), indicating that it took 63 days to eliminate MBM in this group. Total atoms exchange (> 95%) of 13C and 15N was observed through incorporation of the diet into the AVP and AVPR groups. Conclusions: IRMS is an accurate and sensitive technique for tracing the feeding profile of ruminants through blood analysis, thus enabling investigation of ABP use. enabling investigation of ABP use.(AU)
Assuntos
Animais , Bovinos , Espectrometria de Massas , Ruminantes , Análise Multivariada , Encefalopatia Espongiforme Bovina , Doenças Priônicas , Proteínas de Vegetais ComestíveisResumo
Background: Ruminant feed containing animal byproduct proteins (ABPs) is prohibited in many countries due to its risk of transmitting prion diseases (PD). In most cases the entire herd is sacrificed, which causes great harm to the producer countries by preventing their exportation of ruminant derived-products. Methods: We used stable isotope ratio mass spectrometry (IRMS) of carbon (13C/12C) and nitrogen (15N/14N) to trace the animal protein in the blood of 15 buffaloes (Bubalus bubalis) divided into three experimental groups: 1 - received only vegetable protein (VP) during 117 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets containing 13.7% bovine meat and bone meal (MBM) added to a vegetable diet (from days 21-117 in the AVP group and until day 47 in the AVPR group, when MBM was removed). Results: On the 36th day, differences were detectable in the feeding profile (p 0.01) among the three experimental groups, which remained for a further 49 days (85th day). The AVPR group showed isotopic rate reversibility on the 110th day by presenting values similar to those in the control group (VP) (p> 0.05), indicating that it took 63 days to eliminate MBM in this group. Total atoms exchange (> 95%) of 13C and 15N was observed through incorporation of the diet into the AVP and AVPR groups. Conclusions: IRMS is an accurate and sensitive technique for tracing the feeding profile of ruminants through blood analysis, thus enabling investigation of ABP use.(AU)
Assuntos
Animais , Doenças Priônicas/prevenção & controle , Doenças Priônicas/veterinária , Ruminantes , Alimentos de Origem Animal , Ração Animal/análise , Espectrometria de Massas/veterinária , Encefalopatia Espongiforme Bovina/diagnóstico , Monitoramento Epidemiológico/veterinária , IsótoposResumo
Bone tissue repair remains a challenge in tissue engineering. Currently, new materials are being applied and often integrated with live cells and biological scaffolds. The fibrin biopolymer (FBP) proposed in this study has hemostatic, sealant, adhesive, scaffolding and drug-delivery properties. The regenerative potential of an association of FBP, biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSCs) was evaluated in defects of rat femurs. Methods: Adult male Wistar rats were submitted to a 5-mm defect in the femur. This was filled with the following materials and/or associations: BPC; FBP and BCP; FBP and MSCs; and BCP, FBP and MSCs. Bone defect without filling was defined as the control group. Thirty and sixty days after the procedure, animals were euthanatized and subjected to computed tomography, scanning electron microscopy and qualitative and quantitative histological analysis. Results: It was shown that FBP is a suitable scaffold for bone defects due to the formation of a stable clot that facilitates the handling and optimizes the surgical procedures, allowing also cell adhesion and proliferation. The association between the materials was biocompatible. Progressive deposition of bone matrix was higher in the group treated with FBP and MSCs. Differentiation of mesenchymal stem cells into osteogenic lineage was not necessary to stimulate bone formation. Conclusions: FBP proved to be an excellent scaffold candidate for bone repair therapies due to application ease and biocompatibility with synthetic calcium-based materials. The satisfactory results obtained by the association of FBP with MSCs may provide a more effective and less costly new approach for bone tissue engineering.(AU)
Assuntos
Animais , Ratos , Biopolímeros , Matriz Óssea , Fibrina , Células-Tronco Mesenquimais , Produtos BiológicosResumo
Background:Bone tissue repair remains a challenge in tissue engineering. Currently, new materials are being applied and often integrated with live cells and biological scaffolds. The fibrin biopolymer (FBP) proposed in this study has hemostatic, sealant, adhesive, scaffolding and drug-delivery properties. The regenerative potential of an association of FBP, biphasic calcium phosphate (BCP) and mesenchymal stem cells (MSCs) was evaluated in defects of rat femurs.Methods:Adult male Wistar rats were submitted to a 5-mm defect in the femur. This was filled with the following materials and/or associations: BPC; FBP and BCP; FBP and MSCs; and BCP, FBP and MSCs. Bone defect without filling was defined as the control group. Thirty and sixty days after the procedure, animals were euthanatized and subjected to computed tomography, scanning electron microscopy and qualitative and quantitative histological analysis.Results:It was shown that FBP is a suitable scaffold for bone defects due to the formation of a stable clot that facilitates the handling and optimizes the surgical procedures, allowing also cell adhesion and proliferation. The association between the materials was biocompatible. Progressive deposition of bone matrix was higher in the group treated with FBP and MSCs. Differentiation of mesenchymal stem cells into osteogenic lineage was not necessary to stimulate bone formation.Conclusions:FBP proved to be an excellent scaffold candidate for bone repair therapies due to application ease and biocompatibility with synthetic calcium-based materials. The satisfactory results obtained by the association of FBP with MSCs may provide a more effective and less costly new approach for bone tissue engineering.(AU)
Assuntos
Animais , Ratos , Biopolímeros/uso terapêutico , Regeneração Óssea , Adesivo Tecidual de Fibrina/uso terapêutico , Células-TroncoResumo
Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date, several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants, the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from central nervous system to peripheral nervous system applications, specifying positive results as well as future enhancements that are necessary for improving the use of fibrin sealant therapy.(AU)
Assuntos
Animais , Ferimentos e Lesões , Fibrina , Adesivo Tecidual de Fibrina , Cicatriz , Sistema NervosoResumo
Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date, several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants, the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from central nervous system to peripheral nervous system applications, specifying positive results as well as future enhancements that are necessary for improving the use of fibrin sealant therapy.(AU)
Assuntos
Adesivo Tecidual de Fibrina/análise , Sistema Nervoso Central/lesões , Sistema Nervoso Periférico/lesõesResumo
Abstract Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date, several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants, the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from central nervous system to peripheral nervous system applications, specifying positive results as well as future enhancements that are necessary for improving the use of fibrin sealant therapy.