Resumo
Automatic classification methods have been widely used in numerous situations and the boosting method has become known for use of a classification algorithm, which considers a set of training data and, from that set, constructs a classifier with reweighted versions of the training set. Given this characteristic, the aim of this study is to assess a sensory experiment related to acceptance tests with specialty coffees, with reference to both trained and untrained consumer groups. For the consumer group, four sensory characteristics were evaluated, such as aroma, body, sweetness, and final score, attributed to four types of specialty coffees. In order to obtain a classification rule that discriminates trained and untrained tasters, we used the conventional Fishers Linear Discriminant Analysis (LDA) and discriminant analysis via boosting algorithm (AdaBoost). The criteria used in the comparison of the two approaches were sensitivity, specificity, false positive rate, false negative rate, and accuracy of classification methods. Additionally, to evaluate the performance of the classifiers, the success rates and error rates were obtained by Monte Carlo simulation, considering 100 replicas of a random partition of 70% for the training set, and the remaining for the test set. It was concluded that the boosting method applied to discriminant analysis yielded a higher sensitivity rate in regard to the trained panel, at a value of 80.63% and, hence, reduction in the rate of false negatives, at 19.37%. Thus, the boosting method may be used as a means of improving the LDA classifier for discrimination of trained tasters.(AU)
Os métodos automáticos de classificação têm sido amplamente utilizados em inúmeras situações, nas quais o método boosting tem se destacado por utilizar um algoritmo de classificação que considera um conjunto de dados de treinamento e, a partir desse conjunto, constrói um classificador com versões reponderadas do conjunto de treinamento. Dada essa característica, esse trabalho tem por objetivo avaliar um experimento sensorial relacionado a testes de aceitação com cafés especiais, tendo como referência grupos de consumidores, treinados e não treinados. Ao grupo de consumidores, foram avaliadas quatro características sensoriais, tais como aroma, corpo, doçura e nota final, atribuídos a quatro tipos de cafés especiais. Com o propósito de obter uma regra de classificação que discrimine provadores treinados e não treinados, utilizaram-se a análise discriminante de Fisher convencional (LDA) e a análise de discriminante via algoritmo de boosting (Adaboost). Os critérios utilizados na comparação das duas abordagens foram sensibilidade, especificidade, taxa de falsos positivos, taxa de falsos negativos e acurácia dos métodos classificatórios. Adicionalmente, para avaliar o desempenho dos classificadores, as referidas taxas de acerto e erro foram obtidas por simulação Monte Carlo, considerando-se 100 réplicas de uma partição aleatória de 70% para a amostra de treinamento e o restante para o conjunto de teste. Concluiu-se que o método de boosting aplicado na análise discriminante proporcionou maior taxa de acerto quanto aos provadores treinados, cujo valor foi 80,63% e, consequentemente, redução na taxa de falsos negativos, cujo valor foi 19,37%. Dessa forma, o método de boosting pode ser utilizado como uma forma de aperfeiçoar o classificador LDA para a discriminação de provadores treinados.(AU)
Assuntos
Comportamento do Consumidor , Café , Qualidade dos Alimentos , Comportamento AlimentarResumo
Automatic classification methods have been widely used in numerous situations and the boosting method has become known for use of a classification algorithm, which considers a set of training data and, from that set, constructs a classifier with reweighted versions of the training set. Given this characteristic, the aim of this study is to assess a sensory experiment related to acceptance tests with specialty coffees, with reference to both trained and untrained consumer groups. For the consumer group, four sensory characteristics were evaluated, such as aroma, body, sweetness, and final score, attributed to four types of specialty coffees. In order to obtain a classification rule that discriminates trained and untrained tasters, we used the conventional Fishers Linear Discriminant Analysis (LDA) and discriminant analysis via boosting algorithm (AdaBoost). The criteria used in the comparison of the two approaches were sensitivity, specificity, false positive rate, false negative rate, and accuracy of classification methods. Additionally, to evaluate the performance of the classifiers, the success rates and error rates were obtained by Monte Carlo simulation, considering 100 replicas of a random partition of 70% for the training set, and the remaining for the test set. It was concluded that the boosting method applied to discriminant analysis yielded a higher sensitivity rate in regard to the trained panel, at a value of 80.63% and, hence, reduction in the rate of false negatives, at 19.37%. Thus, the boosting method may be used as a means of improving the LDA classifier for discrimination of trained tasters.
Os métodos automáticos de classificação têm sido amplamente utilizados em inúmeras situações, nas quais o método boosting tem se destacado por utilizar um algoritmo de classificação que considera um conjunto de dados de treinamento e, a partir desse conjunto, constrói um classificador com versões reponderadas do conjunto de treinamento. Dada essa característica, esse trabalho tem por objetivo avaliar um experimento sensorial relacionado a testes de aceitação com cafés especiais, tendo como referência grupos de consumidores, treinados e não treinados. Ao grupo de consumidores, foram avaliadas quatro características sensoriais, tais como aroma, corpo, doçura e nota final, atribuídos a quatro tipos de cafés especiais. Com o propósito de obter uma regra de classificação que discrimine provadores treinados e não treinados, utilizaram-se a análise discriminante de Fisher convencional (LDA) e a análise de discriminante via algoritmo de boosting (Adaboost). Os critérios utilizados na comparação das duas abordagens foram sensibilidade, especificidade, taxa de falsos positivos, taxa de falsos negativos e acurácia dos métodos classificatórios. Adicionalmente, para avaliar o desempenho dos classificadores, as referidas taxas de acerto e erro foram obtidas por simulação Monte Carlo, considerando-se 100 réplicas de uma partição aleatória de 70% para a amostra de treinamento e o restante para o conjunto de teste. Concluiu-se que o método de boosting aplicado na análise discriminante proporcionou maior taxa de acerto quanto aos provadores treinados, cujo valor foi 80,63% e, consequentemente, redução na taxa de falsos negativos, cujo valor foi 19,37%. Dessa forma, o método de boosting pode ser utilizado como uma forma de aperfeiçoar o classificador LDA para a discriminação de provadores treinados.