Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta sci. vet. (Impr.) ; 46: 1-6, 2018. tab, graf
Artigo em Português | VETINDEX | ID: biblio-1457835

Resumo

Background: The buffalo milk mozzarella cheese is a new product in the market, with high consumer acceptance and excellent prospects for trade. The cheese is rich in nutrients, which favors the proliferation of microorganisms that can cause food-borne diseases in the consumer. Staphylococcus aureus can cause gastro-enteritis in humans by the production of enterotoxins in food. One problem that may hinder the elimination of undesirable microorganisms in the food industry is the formation of biofilms. The objective of this study was to determine the effect of biofilm formation by Staphylococcus aureus isolated from buffalo mozzarella cheese on sensitivity to sanitizers.Materials, Methods & Results: Fifty samples of buffalo mozzarella cheese were analyzed to investigate the presence of S. aureus. The isolates were obtained through microbiological analysis and identified by PCR. The similarity of the strains was compared through rep-PCR. The distinct strains were tested for biofilm formation in microtiter plates. Soy Tripticase Broth (TSB) was placed in each well of the microtiter plate and overnight cultures of each strain was added. Wells without bacterial culture were used as controls. A villous cap was then placed on the plate and incubated for 48 h at 37°C. During incubation, the biofilms formed on the surface of the villi of the caps. For quantification of biofilm formation, material that remained attached to the cap was stained with crystal violet, the stained biofilm was extracted and the OD570 of each well was measured. Each strain was classified as non-biofilm forming, weak forming, moderately formed or formative strong. Strong forming and non-biofilm forming strains were tested on high density polyethylene, stainless steel and glass surfaces. Plates of 4 cm² of the different materials were placed in TSB where the culture of each isolate was inoculated separately.[...]


Assuntos
Inocuidade dos Alimentos , Queijo/análise , Queijo/microbiologia , Staphylococcus aureus/isolamento & purificação , Búfalos , Contaminação de Alimentos , Laticínios/microbiologia
2.
Acta sci. vet. (Online) ; 46: 1-6, 2018. tab, graf
Artigo em Português | VETINDEX | ID: vti-728666

Resumo

Background: The buffalo milk mozzarella cheese is a new product in the market, with high consumer acceptance and excellent prospects for trade. The cheese is rich in nutrients, which favors the proliferation of microorganisms that can cause food-borne diseases in the consumer. Staphylococcus aureus can cause gastro-enteritis in humans by the production of enterotoxins in food. One problem that may hinder the elimination of undesirable microorganisms in the food industry is the formation of biofilms. The objective of this study was to determine the effect of biofilm formation by Staphylococcus aureus isolated from buffalo mozzarella cheese on sensitivity to sanitizers.Materials, Methods & Results: Fifty samples of buffalo mozzarella cheese were analyzed to investigate the presence of S. aureus. The isolates were obtained through microbiological analysis and identified by PCR. The similarity of the strains was compared through rep-PCR. The distinct strains were tested for biofilm formation in microtiter plates. Soy Tripticase Broth (TSB) was placed in each well of the microtiter plate and overnight cultures of each strain was added. Wells without bacterial culture were used as controls. A villous cap was then placed on the plate and incubated for 48 h at 37°C. During incubation, the biofilms formed on the surface of the villi of the caps. For quantification of biofilm formation, material that remained attached to the cap was stained with crystal violet, the stained biofilm was extracted and the OD570 of each well was measured. Each strain was classified as non-biofilm forming, weak forming, moderately formed or formative strong. Strong forming and non-biofilm forming strains were tested on high density polyethylene, stainless steel and glass surfaces. Plates of 4 cm² of the different materials were placed in TSB where the culture of each isolate was inoculated separately.[...](AU)


Assuntos
Queijo/análise , Queijo/microbiologia , Staphylococcus aureus/isolamento & purificação , Inocuidade dos Alimentos , Búfalos , Laticínios/microbiologia , Contaminação de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA