Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Basic Microbiol ; 56(11): 1308-1315, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27254647

Resumo

To gain more insight into the molecular mechanisms of Colletotrichum gloeosporioides pathogenesis, restriction enzyme-mediated integration (REMI) mutagenesis identified the mutants of C. gloeosporioides impaired in pathogenicity. Transformants screened for defects in pathogenicity using detached leaves and fruits. Of the 20 REMI transformants tested, two mutants (H4 and H7) showed reduced pathogenicity on leaves of apple, kiwi, mango, peach, and fruits of guava, apple, and capsicum. One tagged gene from the genome sequence of mutant H4 was recovered by inverse PCR. Sequence analysis of the tagged site in mutant H4 revealed insertion in diacylglycerol acyltransferase gene which encodes diacylglycerol acyltransferase enzyme, catalyzing the steps involved in the biosynthesis of triacylglycerol, an important component of biological membranes and source of energy. Therefore, tagging of diacylglycerol acyltransferase gene in mutant H4 resulted in reduced pathogenicity, indicating possible role of this gene in pathogenicity of C. gloeosporioides.


Assuntos
Colletotrichum/genética , Colletotrichum/patogenicidade , Diacilglicerol O-Aciltransferase/metabolismo , Doenças das Plantas/microbiologia , Actinidia/microbiologia , Sequência de Bases , Cinamatos/farmacologia , Colletotrichum/enzimologia , Enzimas de Restrição do DNA/metabolismo , Genoma Fúngico , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Malus/microbiologia , Mutagênese Insercional , Mutação , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Virulência/genética
2.
J Basic Microbiol ; 56(2): 138-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26375163

Resumo

A thermostable extracellular alkaline protease producing Bacillus amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth promoting activities. Strain SP1 was purified to 6.48-fold using four-step purification protocol and characterized in detail for its robustness and ecofriendly application in leather and detergent industries. Structural analysis revealed that the protease was monomeric and had a molecular weight of 43 kDa. It exhibited optimum activity at 60°C in alkaline environment (pH 8.0) and stable in the presence of surfactants and oxidizing agents. Enzyme was thermostable at 50°C and retained more than 70% activity after 30 min incubation. It has shown stain removal property and dehairing of goat skin without chemical assistance and hydrolyzing fibrous proteins. This protease showed Km of 0.125 mg ml(-1) and V(max) of 12820 µg ml(-1) indicating its excellent affinity and catalytic role. Thermal inactivation of the pure enzyme followed first-order kinetics. The half life of the pure enzyme at 50, 60, and 65°C was 77, 19.80, and 13.33 min, respectively. The activation energy was 37.19 KJ mol(-1). The results suggest that the B. amyloliquefaciens SP1 has a potential application in different industries.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Detergentes/metabolismo , Endopeptidases/isolamento & purificação , Endopeptidases/metabolismo , Rizosfera , Microbiologia do Solo , Proteínas de Bactérias/química , Endopeptidases/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Malus/microbiologia , Peso Molecular , Desenvolvimento Vegetal , Temperatura
3.
Can J Microbiol ; 61(9): 671-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220821

Resumo

Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C-Ep-D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.


Assuntos
Actinomycetales/enzimologia , Endo-1,4-beta-Xilanases/química , Triticum/química , Actinomycetales/química , Actinomycetales/metabolismo , Celulase/química , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Lignina/química , Papel , Caules de Planta/química , Temperatura
4.
ScientificWorldJournal ; 2014: 702909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25478598

Resumo

The use of fungicides is the continuous exercise particularly in orchard crops where fungal diseases, such as white root rot, have the potential to destroy horticultural crops rendering them unsaleable. In view of above problem, the present study examines the effect of different concentrations of mancozeb (0-2000 ppm) at different incubation periods for their harmful side effects on various microbiological processes, soil microflora, and soil enzymes in alluvial soil (pH 6.8) collected from apple orchards of Shimla in Himachal Pradesh (India). Low concentrations of mancozeb were found to be deleterious towards fungal and actinomycetes population while higher concentrations (1000 and 2000 ppm) were found to be detrimental to soil bacteria. Mancozeb impaired the process of ammonification and nitrification. Similar results were observed for nitrifying and ammonifying bacteria. Phosphorus solubilization was increased by higher concentration of mancozeb, that is, 250 ppm and above. In unamended soil, microbial biomass carbon and carbon mineralization were adversely affected by mancozeb. Soil enzymes, that is, amylase, invertase, and phosphatase showed adverse and disruptive effect when mancozeb used was above 10 ppm in unamended soil. These results conclude that, to lessen the harmful effects in soil biological processes caused by this fungicide, addition of higher amount of nitrogen based fertilizers is required.


Assuntos
Fungos/efeitos dos fármacos , Maneb/farmacologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Zineb/farmacologia , Bactérias/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Índia , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo
5.
Virusdisease ; 29(2): 134-140, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29911145

Resumo

Fusarium is a large genus of filamentous fungi belongs to the division Ascomycota and was first described as Fusisporium. Innumerable members of this genus act as pathogens, endophytes and saprophytes and can be recovered from plants and soils worldwide. Many of these members are known to be phytopathogens. It is among the most diverse and widely dispersed phyto-pathogenic fungi which cause economically important blights, rots, wilts and cankers of many ornamental, field, horticultural and forest crops both in agricultural commodities and natural ecosystems. Some species, e.g. F. graminearum and F. verticillioides have a narrow host range and mainly infect the cereals, whereas F. oxysporum has effects on both monocotyledonous and dicotyledonous plants. Attempts have been made to control the diseases caused by Fusarium sp. and to minimize crop yield losses. Till date, effective and eco-friendly methods have not been devised for the control of this devastating pathogen. A new potential of using mycovirus associated hypovirulence as biocontrol method against Fusarium species has been proposed. The present review taking into account of worldwide researches to provide possible insights for Fusarium-mycovirus coevolution.

6.
Mol Biotechnol ; 59(11-12): 499-517, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28828714

Resumo

Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.


Assuntos
Produtos Agrícolas/genética , Engenharia Genética/métodos , Desnutrição Proteico-Calórica/prevenção & controle , Produtos Agrícolas/fisiologia , Humanos , Desnutrição Proteico-Calórica/genética
7.
3 Biotech ; 7(1): 11, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28391477

Resumo

Xylanases are hydrolytic enzymes which cleave the ß-1, 4 backbone of the complex plant cell wall polysaccharide xylan. Xylan is the major hemicellulosic constituent found in soft and hard food. It is the next most abundant renewable polysaccharide after cellulose. Xylanases and associated debranching enzymes produced by a variety of microorganisms including bacteria, actinomycetes, yeast and fungi bring hydrolysis of hemicelluloses. Despite thorough knowledge of microbial xylanolytic systems, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by xylanases produced by microorganisms and their promising use in pulp biobleaching. Cellulase-free xylanases are important in pulp biobleaching as alternatives to the use of toxic chlorinated compounds because of the environmental hazards and diseases caused by the release of the adsorbable organic halogens. In this review, we have focused on the studies of structural composition of xylan in plants, their classification, sources of xylanases, extremophilic xylanases, modes of fermentation for the production of xylanases, factors affecting xylanase production, statistical approaches such as Plackett Burman, Response Surface Methodology to enhance xylanase production, purification, characterization, molecular cloning and expression. Besides this, review has focused on the microbial enzyme complex involved in the complete breakdown of xylan and the studies on xylanase regulation and their potential industrial applications with special reference to pulp biobleaching, which is directly related to increasing pulp brightness and reduction in environmental pollution.

8.
Braz J Microbiol ; 48(2): 294-304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28063921

Resumo

Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260mg/L), nitrogen fixation (202.91nmolethylenemL-1h-1), indole-3-acetic acid (IAA) (8.1µg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.


Assuntos
Bacillales/isolamento & purificação , Fosfatos de Cálcio/metabolismo , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Valeriana/microbiologia , Antibiose , Bacillales/metabolismo , Biomassa , Cromatografia Líquida de Alta Pressão , Fungos/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo
9.
Int J Food Microbiol ; 232: 134-43, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27294522

Resumo

An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/metabolismo , Endopeptidases/metabolismo , Fusarium/crescimento & desenvolvimento , Sequência de Aminoácidos , Bacillus amyloliquefaciens/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Inibidores de Proteases/farmacologia , Análise de Sequência de DNA , Subtilisinas/genética
10.
3 Biotech ; 6(2): 208, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330279

Resumo

An extracellular alkaline protease producing B. amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth-promoting activities. B. amyloliquefaciens SP1 protease was immobilized using various concentrations of calcium alginate, agar and polyacrylamide to determine the optimum concentration for formation of the beads. Enzyme activity before immobilization (at 60 °C, pH 8.0 for 5 min) was 3580 µg/ml/min. The results of immobilization with various matrices revealed that 3 % calcium alginate (2829.92 µg/ml/min), 2 % agar (2600 µg/ml/min) and 10 % polyacrylamide (5698.99 µg/ml/min) were optimum concentrations for stable bead formation. Immobilized enzyme reusability results indicated that calcium alginate, agar and polyacrylamide beads retained 25.63, 22.05 and 34.04 % activity in their fifth repeated cycle, respectively. In cell immobilization technique, the free movement of microorganisms is restricted in the process, and a semi-continuous system of fermentation can be used. In the present work, this technique has been used for alkaline protease production using different matrices. Polyacrylamide (10 %) was found with the highest total alkaline protease titer, i.e., 24,847 µg/ml/min semi-continuously for 18 days as compared to agar (total enzyme titer: 5800 in 10 days) and calcium alginate (total enzyme titer: 13,010 in 15 days). This present study reported that polyacrylamide (10 %) among different matrices has maximum potential of immobilization of B. amyloliquefaciens SP1 and its detergent stable alkaline protease with effective application in bloodstain removal.

11.
3 Biotech ; 5(6): 1053-1066, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28324413

Resumo

The effects of yeast extract (X1), NH4NO3 (X2), peptone (X3), urea (X4), CMC (X5), Tween 20 (X6), MgSO4 (X7), and CaCO3 (X8) on production of xylanase from Cellulosimicrobium cellulans CKMX1 were optimized by statistical analysis using response surface methodology (RSM). The RSM was used to optimize xylanase production by implementing the Central composite design. Statistical analysis of the results showed that the linear, interaction and quadric terms of these variables had significant effects. However, only the linear effect of X4, X5, interaction effect of X1X7, X1X8, X2X3, X2X8, X3X6, X3X8, X4X6, X4X7, X5X7, X5X8 and quadratic effect of X 32 , X 52 and X 72 found to be insignificant terms in the quadratic model and had no response at significant level. The minimum and maximum xylanase production obtained was 331.50 U/g DBP and 1027.65 U/g DBP, respectively. The highest xylanase activity was obtained from Run No. 30, which consisted of yeast extract (X1), 1.00 g (%); NH4NO3 (X2), 0.20 g (%); peptone (X3), 1.00 g (%); urea (X4), 10 mg (%); CMC (X5), 1.00 g (%); Tween 20 (X6), 0.02 mL (%); CaCO3 (X7), 0.50 g (%) and MgSO4 (X8), 9.0 g (%). The optimization resulted in 3.1-fold increase of xylanase production, compared with the lowest xylanase production of 331.50 U/g DBP after 72 h of incubation in stationary flask experiment. Application of cellulase-free xylanase in pulp biobleaching from C. cellulans CKMX1 under C-EP-D sequence has been shown to bring about a 12.5 % reduction of chlorine, decrease of 0.8 kappa points (40 %), and gain in brightness was 1.42 % ISO points in 0.5 % enzyme treated pulp as compared to control.

12.
Braz. J. Microbiol. ; 48(2): 294-304, abr.-jun. 2017. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17555

Resumo

Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260 mg/L), nitrogen fixation (202.91 nmol ethylene mL-1 h-1), indole-3-acetic acid (IAA) (8.1 µg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.(AU)


Assuntos
Fixação de Nitrogênio , Fosfatos , Bactérias , Rizosfera , Bactérias Fixadoras de Nitrogênio , Glucose Desidrogenase , Fertilizantes/microbiologia
13.
Braz. j. microbiol ; 48(2): 294-304, April.-June 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839377

Resumo

Abstract Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260 mg/L), nitrogen fixation (202.91 nmol ethylene mL-1 h-1), indole-3-acetic acid (IAA) (8.1 µg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Valeriana/microbiologia , Fosfatos de Cálcio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Bacillales/isolamento & purificação , Fixação de Nitrogênio , Microbiologia do Solo , Cromatografia Líquida de Alta Pressão , Solanum lycopersicum/microbiologia , Raízes de Plantas/microbiologia , Biomassa , Bacillales/metabolismo , Rizosfera , Fungos/crescimento & desenvolvimento , Antibiose
14.
Braz. arch. biol. technol ; 58(6): 913-922, Nov.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-766962

Resumo

ABSTRACT A xylanolytic bacterium was isolated from mushroom compost by using enrichment technique. Results from the metabolic fingerprinting, whole-cell fatty acids methyl ester analysis and 16S rDNA sequencing suggested the bacterium to be Cellulosimicrobium cellulans CKMX1. Due to the xylanolytic activity of this bacterium, isolation and characterization of the xylanase gene were attempted. A distinct fragment of about 1671 bp was successfully amplified using PCR and cloned into Escherichia coli DH5α. A BLAST search confirmed that the DNA sequence from the amplified fragment was endo-1, 4-beta-xylanase, which was a member of glycoside hydrolase family 11. It showed 98% homology withCellulosimicrobium sp. xylanase gene (Accession no. FJ859907.1) reported from the gut of Eisenia fetida in Korea. In silicophysico-chemical characterization of amino acid sequence of xylanase showed an open reading frame encoding a 556 amino acid sequence with a molecular weight of 58 kDa and theoretical isolectric point (pI) of 4.46 was computed using Expasy's ProtParam server. Secondary and homology based 3D structure of xylanase was analysed using SOPMA and Swiss-Prot software.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA