Resumo
Trichoderma sp., a well known biological control agent against several phytopathogens, was tested for its phosphate (P) solubilizing potential. Fourteen strains of Trichoderma sp. were isolated from the forest tree rhizospheres of pinus, deodar, bamboo, guava and oak on Trichoderma selective medium. The isolates were tested for their in-vitro P-solubilizing potential using National Botanical Research Institute Phosphate (NBRIP) broth containing tricalcium phosphate (TCP) as the sole P source, and compared with a standard culture of T. harzianum. All the cultures were found to solubilize TCP but with varying potential. The isolate DRT-1 showed maximum amount of soluble phosphate (404.07 µg.ml-1), followed by the standard culture of T. harzianum (386.42 µg.ml-1) after 96 h of incubation at 30+1(0)C. Extra-cellular acid and alkaline phosphatases of the fungus were induced only in the presence of insoluble phosphorus source (TCP). High extra-cellular alkaline phosphatase activity was recorded for the isolate DRT-1 (14.50 U.ml-1) followed by the standard culture (13.41 U.ml-1) at 72h. The cultures showed much lesser acid phosphatase activities. Under glasshouse conditions, Trichoderma sp. inoculation increased chickpea (Cicer arietinum) growth parameters including shoot length, root length, fresh and dry weight of shoot as well as roots, in P-deficient soil containing only bound phosphate (TCP). Shoot weight was increased by 23% and 33% by inoculation with the isolate DRT-1 in the soil amended with 100 and 200 mg TCP kg-1 soil, respectively, after 60 d of sowing. The study explores high P-solubilizing potential of Trichoderma sp., which can be exploited for the solubilization of fixed phosphates present in the soil, thereby enhancing soil fertility and plant growth.
Resumo
Trichoderma sp., a well known biological control agent against several phytopathogens, was tested for its phosphate (P) solubilizing potential. Fourteen strains of Trichoderma sp. were isolated from the forest tree rhizospheres of pinus, deodar, bamboo, guava and oak on Trichoderma selective medium. The isolates were tested for their in-vitro P-solubilizing potential using National Botanical Research Institute Phosphate (NBRIP) broth containing tricalcium phosphate (TCP) as the sole P source, and compared with a standard culture of T. harzianum. All the cultures were found to solubilize TCP but with varying potential. The isolate DRT-1 showed maximum amount of soluble phosphate (404.07 µg.ml-1), followed by the standard culture of T. harzianum (386.42 µg.ml-1) after 96 h of incubation at 30+1(0)C. Extra-cellular acid and alkaline phosphatases of the fungus were induced only in the presence of insoluble phosphorus source (TCP). High extra-cellular alkaline phosphatase activity was recorded for the isolate DRT-1 (14.50 U.ml-1) followed by the standard culture (13.41 U.ml-1) at 72h. The cultures showed much lesser acid phosphatase activities. Under glasshouse conditions, Trichoderma sp. inoculation increased chickpea (Cicer arietinum) growth parameters including shoot length, root length, fresh and dry weight of shoot as well as roots, in P-deficient soil containing only bound phosphate (TCP). Shoot weight was increased by 23% and 33% by inoculation with the isolate DRT-1 in the soil amended with 100 and 200 mg TCP kg-1 soil, respectively, after 60 d of sowing. The study explores high P-solubilizing potential of Trichoderma sp., which can be exploited for the solubilization of fixed phosphates present in the soil, thereby enhancing soil fertility and plant growth.