Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
J. venom. anim. toxins incl. trop. dis ; 26: e20200011, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135130

Resumo

Neuroimaging strategies are essential to locate, to elucidate the etiology, and to the follow up of brain disease patients. Magnetic resonance imaging (MRI) provides good cerebral soft-tissue contrast detection and diagnostic sensitivity. Inflammatory lesions and tumors are common brain diseases that may present a similar pattern of a cerebral ring enhancing lesion on MRI, and non-enhancing core (which may reflect cystic components or necrosis) leading to misdiagnosis. Texture analysis (TA) and machine learning approaches are computer-aided diagnostic tools that can be used to assist radiologists in such decisions. Methods: In this study, we combined texture features with machine learning (ML) methods aiming to differentiate brain tumors from inflammatory lesions in magnetic resonance imaging. Retrospective examination of 67 patients, with a pattern of a cerebral ring enhancing lesion, 30 with inflammatory, and 37 with tumoral lesions were selected. Three different MRI sequences and textural features were extracted using gray level co-occurrence matrix and gray level run length. All diagnoses were confirmed by histopathology, laboratorial analysis or MRI. Results: The features extracted were processed for the application of ML methods that performed the classification. T1-weighted images proved to be the best sequence for classification, in which the differentiation between inflammatory and tumoral lesions presented high accuracy (0.827), area under ROC curve (0.906), precision (0.837), and recall (0.912). Conclusion: The algorithm obtained textures capable of differentiating brain tumors from inflammatory lesions, on T1-weghted images without contrast medium using the Random Forest machine learning classifier.(AU)


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Encefálicas/classificação , Espectroscopia de Ressonância Magnética
2.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200011, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32227

Resumo

Neuroimaging strategies are essential to locate, to elucidate the etiology, and to the follow up of brain disease patients. Magnetic resonance imaging (MRI) provides good cerebral soft-tissue contrast detection and diagnostic sensitivity. Inflammatory lesions and tumors are common brain diseases that may present a similar pattern of a cerebral ring enhancing lesion on MRI, and non-enhancing core (which may reflect cystic components or necrosis) leading to misdiagnosis. Texture analysis (TA) and machine learning approaches are computer-aided diagnostic tools that can be used to assist radiologists in such decisions. Methods: In this study, we combined texture features with machine learning (ML) methods aiming to differentiate brain tumors from inflammatory lesions in magnetic resonance imaging. Retrospective examination of 67 patients, with a pattern of a cerebral ring enhancing lesion, 30 with inflammatory, and 37 with tumoral lesions were selected. Three different MRI sequences and textural features were extracted using gray level co-occurrence matrix and gray level run length. All diagnoses were confirmed by histopathology, laboratorial analysis or MRI. Results: The features extracted were processed for the application of ML methods that performed the classification. T1-weighted images proved to be the best sequence for classification, in which the differentiation between inflammatory and tumoral lesions presented high accuracy (0.827), area under ROC curve (0.906), precision (0.837), and recall (0.912). Conclusion: The algorithm obtained textures capable of differentiating brain tumors from inflammatory lesions, on T1-weghted images without contrast medium using the Random Forest machine learning classifier.(AU)


Assuntos
Espectroscopia de Ressonância Magnética , Radiologistas , Neoplasias Encefálicas/diagnóstico , Inflamação/diagnóstico , Neuroimagem
3.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e144918, Feb. 14, 2019. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18970

Resumo

Background: Background: Tuberculosis (TB) is an infectious lung disease with high worldwide incidence that severely compromises the quality of life in affected individuals. Clinical tests are currently employed to monitor pulmonary status and treatment progression. The present study aimed to apply a three-dimensional (3D) reconstruction method based on chest radiography to quantify lung-involvement volume of TB acute-phase patients before and after treatment. In addition, these results were compared with indices from conventional clinical exams to show the coincidence level. Methods: A 3D lung reconstruction method using patient chest radiography was applied to quantify lung-involvement volume using retrospective examinations of 50 patients who were diagnosed with pulmonary TB and treated with two different drugs schemes. Twenty-five patients were treated with Scheme I (rifampicin, isoniazid, and pyrazinamide), whereas twenty-five patients were treated with Scheme II (rifampicin, isoniazid, pyrazinamide, and ethambutol). Acute-phase reaction: Serum exams included C-reactive protein levels, erythrocyte sedimentation rate, and albumin levels. Pulmonary function was tested posttreatment. Results: We found strong agreement between lung involvement and serum indices pre- and posttreatment. Comparison of the functional severity degree with lung involvement based on 3D image quantification for both treatment schemes found a high correlation. Conclusions: The present 3D reconstruction method produced a satisfactory agreement with the acute-phase reaction, most notably a higher significance level with the C-reactive protein. We also found a quite reasonable coincidence between the 3D reconstruction method and the degree of functional lung impairment posttreatment. The performance of the quantification method was satisfactory when comparing the two treatment schemes. Thus, the 3D reconstruction quantification method may be useful tools for monitoring TB treatment...(AU)


Assuntos
Humanos , Radiografia Torácica/métodos , Tuberculose Pulmonar/diagnóstico por imagem , Reação de Fase Aguda/diagnóstico por imagem , Testes de Função Respiratória , Tratamento Farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA