Resumo
Background: Serological evaluation performed by double agar gel immunodiffusion test (DID) is used for diagnosis, evaluation of severity, management of paracoccidioidomycosis patients, and development of new clinical studies. For these reasons, the Botucatu Medical School of UNESP maintains a serum bank at the Experimental Research Unit with patient clinical data. This study aimed to evaluate the influence of the freeze-thaw cycle and different blood matrices on the titration of circulating antibodies. Methods: The study included 207 patients with confirmed (etiology-demonstrated) or probable (serology-demonstrated) paracoccidioidomycosis, and DID was performed with culture filtrate from Paracoccidioides brasiliensis B339 as antigen. First experiment: the antibody levels were determined in serum samples from 160 patients with the chronic form and 20 with the acute/subacute form, stored at 80o C for more than six months. Second experiment: titers of 81 samples of serum and plasma with ethylenediaminetetraacetic acid (EDTA) or heparin, from 27 patients, were compared according to matrix and effect of storage at 20o C for up to six months. Differences of titers higher than one dilution were considered discordant. Results: First experiment: test and retest presented concordant results in serum stored for up to three years, and discordant titers in low incidence in storage for four to six years but high incidence when stored for more than six years, including conversion from reagent test to non-reagent retest. Second experiment: serum, plasma-EDTA and plasma-heparin samples showed concordant titers, presenting direct correlation, with no interference of storage for up to six months. Conclusions: Storage at 80o C for up to six years has no or little influence on the serum titers determined by DID, permitting its safe use in studies depending on this parameter. The concordant titrations in different blood matrices demonstrated that the plasma can be used for immunodiffusion test in paracoccidioidomycosis, with stability for at least six months after storage at 20o C.(AU)
Assuntos
Imunodifusão , Ácido Edético/análise , Plasma , Testes Sorológicos/métodosResumo
The lungs have great importance in patients with paracoccidioidomycosis since they are the portal of entry for the infecting fungi, the site of quiescent foci, and one of the most frequently affected organs. Although they have been the subject of many studies with different approaches, the severity classification of the pulmonary involvement, using imaging procedures, has not been carried out yet. This study aimed to classify the active and the residual pulmonary damage using radiographic and tomographic evaluations, according to the area involved and types of lesions.
Assuntos
Humanos , Paracoccidioidomicose/diagnóstico por imagem , Índice de Gravidade de Doença , Pulmão/microbiologia , Pneumopatias/microbiologia , Radiografia Torácica , TomografiaResumo
Background: Cryptoccocal meningitis continues to present high incidence among AIDS patients. The treatment of choice is the synergistic combination of flucytosine (5-FC) with amphotericin B deoxycholate (AmBd) or its lipid formulations. However, 5-FC is unavailable in many countries and AmB demands hospitalization. The combination of AmB with the fungistatic fluconazole (FLC) or the use of high FLC daily doses alone became the choice. Nonetheless, sterilization of cerebrospinal fluid is delayed with FLC monotherapy, mainly with high fungal burden. These findings suggest the search for new antifungal compounds, such as liriodenine. Methods: Liriodenine antifungal activity was evaluated by three procedures: determining the minimum inhibitory concentration (MIC) on 30 strains of the Cryptococcus neoformans (C. neoformans) complex and 30 of the Cryptococcus gattii (C. gattii) complex, using EUCAST methodology and amphotericin B deoxycholate as control; performing the time-kill methodology in two strains of the C. neoformans complex and one of the C. gattii complex; and injury to cryptococcal cells, evaluated by transmission electron microscopy (TEM). Liriodenine absorption and safety at 0.75 and 1.50 mg.kg-1 doses were evaluated in BALB/c mice. Results: Liriodenine MICs ranged from 3.9 to 62.5 µg.mL-1 for both species complexes, with no differences between them. Time-kill methodology confirmed its concentration-dependent fungicidal effect, killing all the strains below the limit of detection (33 CFU.mL-1) at the highest liriodenine concentration (32-fold MIC), with predominant activity during the first 48 hours. Liriodenine induced severe Cryptococcus alterations cytoplasm with intense rarefaction and/or degradation, injury of organelles, and presence of vacuoles. Liriodenine was better absorbed at lower doses, with no histopathological alterations on the digestive tract. Conclusion: The fungicidal activity confirmed by time-kill methodology, the intense Cryptococcus injury observed by TEM, the absorption after gavage administration, and the safety at the tested doses indicate that the liriodenine molecule is a promising drug lead for development of anticryptococcal agents.(AU)