Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1490119

Resumo

ABSTRACT These experiments were performed to determine the chemical composition, coefficients of nutrient and energy metabolizability, amino acid composition, and cytotoxicity of different castor oil meals subjected to different detoxification processes and added to the diet of Japanese quails. In the trial, 180 46-d-old female Japanese quails were distributed according to a completely randomized design into five treatments and with replicates of six bird each. The treatments consisted of following detoxification methods of castor oil meal: Castor oil meal A (CMA) - recovery in alcohol at 80 °C for 20 minutes and drying at 80 °C; castor oil meal B (CMB) and C (CMC) - recovery in alcohol at 80 °C for 6 minutes, neutralization with 5% NaOH, and drying under direct sunlight sun for two days (CMB) or pelleted (CMC); castor oil meal D (CMD) - recovery in alcohol at 110 °C for 15 minutes and drying at 110 °C. Castor oil meal was added replacing 20% of the reference diet. There was slight chemical composition variation (1.21% in crude protein, 6% in dry matter, 2.2% in ether extract and 64 kcal/kg in gross energy) among the castor oil meals submitted to the different treatments. The castor oil meal submitted to treatment C showed the highest amino acid values. In the cytotoxicity test, treatment D presented lower ricin activity. Castor oil meals A, C, and D may be included in Japanese quail diets; however, castor oil meal D is recommended due to the simplicity its industrial process, its low toxicity, and metabolizability coefficients obtained.

2.
Artigo em Inglês | VETINDEX | ID: vti-718125

Resumo

ABSTRACT These experiments were performed to determine the chemical composition, coefficients of nutrient and energy metabolizability, amino acid composition, and cytotoxicity of different castor oil meals subjected to different detoxification processes and added to the diet of Japanese quails. In the trial, 180 46-d-old female Japanese quails were distributed according to a completely randomized design into five treatments and with replicates of six bird each. The treatments consisted of following detoxification methods of castor oil meal: Castor oil meal A (CMA) - recovery in alcohol at 80 °C for 20 minutes and drying at 80 °C; castor oil meal B (CMB) and C (CMC) - recovery in alcohol at 80 °C for 6 minutes, neutralization with 5% NaOH, and drying under direct sunlight sun for two days (CMB) or pelleted (CMC); castor oil meal D (CMD) - recovery in alcohol at 110 °C for 15 minutes and drying at 110 °C. Castor oil meal was added replacing 20% of the reference diet. There was slight chemical composition variation (1.21% in crude protein, 6% in dry matter, 2.2% in ether extract and 64 kcal/kg in gross energy) among the castor oil meals submitted to the different treatments. The castor oil meal submitted to treatment C showed the highest amino acid values. In the cytotoxicity test, treatment D presented lower ricin activity. Castor oil meals A, C, and D may be included in Japanese quail diets; however, castor oil meal D is recommended due to the simplicity its industrial process, its low toxicity, and metabolizability coefficients obtained.

3.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1490035

Resumo

An experiment was carried out to evaluate the effect of environmental enrichment in a free-range chicken production system on live performance as a function of microclimate, physiological parameters, and performance parameters. Four production modules were divided into four pens with 10 birds each, totaling 60 birds. The following treatments were applied: access to a paddock (TEST), access to a paddock with perches (PER), access to a paddock with artificial shade (SHA), and access to the paddock with perches and artificial shade (PESH). The PESH production module presented the best globe temperature (Tbg,ºC) and enthalpy (h, kJ/kg), and thereby, the best thermal environmental conditions, which ensured the longest permanence time of the birds in the paddock. The SHA and PESH modules promoted the lowest respiratory rate and shank and comb temperatures. Live performance was influenced by the presence of environmental enrichment (modules SHA and PESH), with the highest live weight (LW) and weight gain (WG) and the lowest feed conversion ratio (FCR) and metabolizable energy intake (MEI). Parts yield, such as giblets, were not influenced by production modules, except for PESH, which promoted higher offal weight. In general, chickens reared in enriched production modules presented greatest performance and comfort results and were considered close to optimal rearing conditions.

4.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1490047

Resumo

An experiment was carried out to determine the chemical composition, metabolizable energy values, and coefficients of nutrient digestibility of corn germ meal for layers. The chemical composition of corn germ meal was determined, and then a metabolism assay was performed to determine its apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) values and its dry matter and gross energy apparent metabolizability coefficients (CAMDM and CAMGE, respectively). In the 8-day assay (four days of adaptation and four days of total excreta collection), 60 29-week-old white Lohman LSL layers were used. A completely randomized experimental design, with three treatments with five replicates of four birds each, was applied. Treatments consisted of a reference diet and two test diets, containing 20 or 30% corn germ meal. Results were submitted to analysis of variance and means were compared by the Tukey tests at 5% probability level. The chemical composition of corn germ meal was: 96.39% dry matter, 49.48% ether extract, 1.87% ashes, 7243 kcal gross energy/kg, 11.48% protein, 0.19% methionine, 0.21% cystine, 0.48% lysine, 0.40% threonine, 0.72% arginine, 0.35% isoleucine, 0.83% leucine, 0.57% valine, and 0.37% histidine, on as-fed basis. There were no statistical differences in AME, AMEn, CAMDM, and CAMGE values with the inclusion of 20 and 30% corn germ meal in the diets. On dry matter basis, AME, AMEn, CAMDM, and CAMGE values of corn germ meal were: 4,578 and 4,548 kcal/kg, 4,723 and 4,372 kcal/kg, 64.95 and 61.86%, respectively.

5.
Artigo em Inglês | VETINDEX | ID: vti-718081

Resumo

An experiment was carried out to determine the chemical composition, metabolizable energy values, and coefficients of nutrient digestibility of corn germ meal for layers. The chemical composition of corn germ meal was determined, and then a metabolism assay was performed to determine its apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) values and its dry matter and gross energy apparent metabolizability coefficients (CAMDM and CAMGE, respectively). In the 8-day assay (four days of adaptation and four days of total excreta collection), 60 29-week-old white Lohman LSL layers were used. A completely randomized experimental design, with three treatments with five replicates of four birds each, was applied. Treatments consisted of a reference diet and two test diets, containing 20 or 30% corn germ meal. Results were submitted to analysis of variance and means were compared by the Tukey tests at 5% probability level. The chemical composition of corn germ meal was: 96.39% dry matter, 49.48% ether extract, 1.87% ashes, 7243 kcal gross energy/kg, 11.48% protein, 0.19% methionine, 0.21% cystine, 0.48% lysine, 0.40% threonine, 0.72% arginine, 0.35% isoleucine, 0.83% leucine, 0.57% valine, and 0.37% histidine, on as-fed basis. There were no statistical differences in AME, AMEn, CAMDM, and CAMGE values with the inclusion of 20 and 30% corn germ meal in the diets. On dry matter basis, AME, AMEn, CAMDM, and CAMGE values of corn germ meal were: 4,578 and 4,548 kcal/kg, 4,723 and 4,372 kcal/kg, 64.95 and 61.86%, respectively.

6.
Artigo em Inglês | VETINDEX | ID: vti-718069

Resumo

An experiment was carried out to evaluate the effect of environmental enrichment in a free-range chicken production system on live performance as a function of microclimate, physiological parameters, and performance parameters. Four production modules were divided into four pens with 10 birds each, totaling 60 birds. The following treatments were applied: access to a paddock (TEST), access to a paddock with perches (PER), access to a paddock with artificial shade (SHA), and access to the paddock with perches and artificial shade (PESH). The PESH production module presented the best globe temperature (Tbg,ºC) and enthalpy (h, kJ/kg), and thereby, the best thermal environmental conditions, which ensured the longest permanence time of the birds in the paddock. The SHA and PESH modules promoted the lowest respiratory rate and shank and comb temperatures. Live performance was influenced by the presence of environmental enrichment (modules SHA and PESH), with the highest live weight (LW) and weight gain (WG) and the lowest feed conversion ratio (FCR) and metabolizable energy intake (MEI). Parts yield, such as giblets, were not influenced by production modules, except for PESH, which promoted higher offal weight. In general, chickens reared in enriched production modules presented greatest performance and comfort results and were considered close to optimal rearing conditions.

7.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1489982

Resumo

The aim of this study was to determine the chemical composition, amino acid content and energy values, as well as to quantify the passage rate in the digestive tract of three different poultry offal meals (POM), in two experiments carried out with broilers. In the first experiment, metabolizable energy values were determined (AMEn and TMEn) using the method of total excreta collection. In this experiment, 150 15-d-old male and female broilers were distributed according to a completely randomized experimental design with 5 treatments of 5 replicates of 6 birds each. The following treatments were applied: a reference diet, three test diets consisting of 250 g/kg of the tested ingredient (POM) + 750 g/kg of the reference diet, and one group of birds fasted for excreta collection to determine endogenous and metabolic losses. In the second experiment, POM passage rate results were obtained using 90 26-d-old broilers distributed according a completely randomized design with three treatments of 5 replicates of 6 birds each. POM passage rate was correlated (r = -99.86%) with its EE content. The evaluated POMs presented the following ME values: 16,727; 15,781 and 17,443 MJ AMEn /kg and 17,877; 15,882 and 17,527 MJ TMEn /kg for samples A, B and C, respectively.

8.
Artigo em Inglês | VETINDEX | ID: vti-717982

Resumo

The aim of this study was to determine the chemical composition, amino acid content and energy values, as well as to quantify the passage rate in the digestive tract of three different poultry offal meals (POM), in two experiments carried out with broilers. In the first experiment, metabolizable energy values were determined (AMEn and TMEn) using the method of total excreta collection. In this experiment, 150 15-d-old male and female broilers were distributed according to a completely randomized experimental design with 5 treatments of 5 replicates of 6 birds each. The following treatments were applied: a reference diet, three test diets consisting of 250 g/kg of the tested ingredient (POM) + 750 g/kg of the reference diet, and one group of birds fasted for excreta collection to determine endogenous and metabolic losses. In the second experiment, POM passage rate results were obtained using 90 26-d-old broilers distributed according a completely randomized design with three treatments of 5 replicates of 6 birds each. POM passage rate was correlated (r = -99.86%) with its EE content. The evaluated POMs presented the following ME values: 16,727; 15,781 and 17,443 MJ AMEn /kg and 17,877; 15,882 and 17,527 MJ TMEn /kg for samples A, B and C, respectively.

9.
Artigo em Inglês | VETINDEX | ID: vti-17866

Resumo

A fibrolytic enzyme complex was added to the pre-starter diet. Broiler chicks were randomly distributed into five treatments, consisting of a diet with no enzyme addition and four test diets supplemented with 100, 200, 300 and 400g/T of an enzyme complex. The dietary inclusion of the enzyme complex increased weight gain, and the dose of 300g/T improved weight gain and worsened feed conversion ratio.

10.
Rev. bras. ciênc. avic ; 13(3): 217-218, 20110000.
Artigo em Inglês | VETINDEX | ID: biblio-1489956

Resumo

A fibrolytic enzyme complex was added to the pre-starter diet. Broiler chicks were randomly distributed into five treatments, consisting of a diet with no enzyme addition and four test diets supplemented with 100, 200, 300 and 400g/T of an enzyme complex. The dietary inclusion of the enzyme complex increased weight gain, and the dose of 300g/T improved weight gain and worsened feed conversion ratio.


Assuntos
Animais , Dieta , Enzimas/administração & dosagem , Galinhas/classificação , Glycine max , Zea mays
11.
R. bras. Ci. avíc. ; 13(3): 217-218, 20110000.
Artigo em Inglês | VETINDEX | ID: vti-2555

Resumo

A fibrolytic enzyme complex was added to the pre-starter diet. Broiler chicks were randomly distributed into five treatments, consisting of a diet with no enzyme addition and four test diets supplemented with 100, 200, 300 and 400g/T of an enzyme complex. The dietary inclusion of the enzyme complex increased weight gain, and the dose of 300g/T improved weight gain and worsened feed conversion ratio.(AU)


Assuntos
Animais , Enzimas/administração & dosagem , Dieta , Galinhas/classificação , Zea mays , Glycine max
12.
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1489920

Resumo

The use of probiotics in animal and human feeding has been a subject of increasing interest both for the academia and the industry, mostly due to their potential positive effects on health and profitability. However, the knowledge on the composition of bacterial gastrointestinal communities in humans and animals, as well as its respective nutritional requirements, is far from being elucidated. Due to the ban of the use of antibiotic growth promoters in animal feeds, there has been an increasing interest on the utilization of probiotics to improve animal intestinal health under commercial settings. However, the possibility of horizontal transference of antibiotic-resistant genes between probiotic bacteria and pathogenic species has become a concern of poultry farmers and consumers around the world. Innovative ideas have emerged, such as the addition of essential oils, spices, and other plant extracts to feeds of monogastric animals to promote intestinal health. These natural compounds are considered ecologically adequate and safe for feeding purposes. This new reality will probably change the direction of research and of the use of additives in poultry production.

13.
Artigo em Inglês | VETINDEX | ID: vti-717927

Resumo

The use of probiotics in animal and human feeding has been a subject of increasing interest both for the academia and the industry, mostly due to their potential positive effects on health and profitability. However, the knowledge on the composition of bacterial gastrointestinal communities in humans and animals, as well as its respective nutritional requirements, is far from being elucidated. Due to the ban of the use of antibiotic growth promoters in animal feeds, there has been an increasing interest on the utilization of probiotics to improve animal intestinal health under commercial settings. However, the possibility of horizontal transference of antibiotic-resistant genes between probiotic bacteria and pathogenic species has become a concern of poultry farmers and consumers around the world. Innovative ideas have emerged, such as the addition of essential oils, spices, and other plant extracts to feeds of monogastric animals to promote intestinal health. These natural compounds are considered ecologically adequate and safe for feeding purposes. This new reality will probably change the direction of research and of the use of additives in poultry production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA