Resumo
Passion fruit seeds must be clean and dry before the extraction processing to obtain high-quality oil for edible and cosmetic purposes. This research studies the viability of a cleaning process of seeds by evaluating the oil quality. The research examined 2 maturation stages of the fruit and one purification process of the seeds, compared to the control. The oil quality was evaluated by fatty acid composition, acidity, peroxide value and oxidative stability. The pulp waste suffered a thermal treatment in an alkaline water solution at 60°C for 10min and was further purified in an experimental decanter. In the control treatment, the pulp waste was processed using only water at ambient conditions. The passion fruit seeds were totally cleaned by the thermal/chemical treatment, allowing a faster drying (less than 50% of the drying time) of the seeds and a bit higher yield of oil extraction (proportionally around 7.7%), without changes in quality of the oil.(AU)
As sementes de maracujá devem ser limpas e secas antes do processo de extração para obtenção de um óleo de alta qualidade, para fins comestíveis ou para produtos cosméticos. Este trabalho investigou um processo de purificação das sementes e seu efeito na qualidade do óleo. A pesquisa contemplou dois estádios de maturação dos frutos e um processo de purificação das sementes, comparado com o controle. A qualidade do óleo foi avaliada através da composição de ácidos graxos, acidez do óleo, índice de peróxido e estabilidade oxidativa. O resíduo sofreu um tratamento térmico em solução alcalina, mantida a 60oC por 10min e, posteriormente, foi processado em um decantador experimental. No tratamento de controle, o resíduo da polpa sofreu tratamento em água à temperatura ambiente. Concluiu-se que as sementes foram totalmente limpas por meio do tratamento térmico/químico, permitindo uma secagem mais rápida das sementes (menos de 50% do tempo de secagem) e havendo um maior rendimento de extração de óleo (proporcionalmente, cerca de 7,7%), sem alteração na sua qualidade.(AU)
Assuntos
Passiflora/fisiologia , Óleos de Plantas/análiseResumo
Knowledge of the respiration rate during the storage is important in the evaluation of the post-harvest tools that preserve fruit quality, and also for the provision of information for the development of new packages. This work aimed to evaluate the respiration rate of 'Golden' Carica papaya stored under refrigeration and controlled atmosphere conditions. The fruit was kept at 13 °C in controlled atmospheres comprising three levels of O2 (20.8 %, 6 %, 3 %) with a minimum level of CO2 (0.1 %); and three levels of CO2 (0.1 %, 6 %, 12 %) with the lowest level of O2 (3 %). Measurements were taken at intervals of 5 days during the 30 days of storage. The mass loss and the peel color of the fruits were identified at the end of the storage period. The fruit maintained under 'normal' atmosphere conditions (20.8 % O2 and 0.1 % CO2) increased its respiration rate after the 10th day, reaching after 30 days 4.3 times the initial value. After 30 days in 3 % O2, the respiration rate was 2.9 times less than in the normal atmosphere. The decrease in respiration rate minimized the mass loss in fruit stored at 3 % O2, but it was unaffected by increasing levels of CO2.
Assuntos
Alimentos Resfriados , Carica/fisiologia , Qualidade dos Alimentos , Taxa RespiratóriaResumo
Knowledge of the respiration rate during the storage is important in the evaluation of the post-harvest tools that preserve fruit quality, and also for the provision of information for the development of new packages. This work aimed to evaluate the respiration rate of 'Golden' Carica papaya stored under refrigeration and controlled atmosphere conditions. The fruit was kept at 13 °C in controlled atmospheres comprising three levels of O2 (20.8 %, 6 %, 3 %) with a minimum level of CO2 (0.1 %); and three levels of CO2 (0.1 %, 6 %, 12 %) with the lowest level of O2 (3 %). Measurements were taken at intervals of 5 days during the 30 days of storage. The mass loss and the peel color of the fruits were identified at the end of the storage period. The fruit maintained under 'normal' atmosphere conditions (20.8 % O2 and 0.1 % CO2) increased its respiration rate after the 10th day, reaching after 30 days 4.3 times the initial value. After 30 days in 3 % O2, the respiration rate was 2.9 times less than in the normal atmosphere. The decrease in respiration rate minimized the mass loss in fruit stored at 3 % O2, but it was unaffected by increasing levels of CO2.(AU)