Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta cir. bras ; 38: e380123, 2023. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1429535

Resumo

Purpose: Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. Methods: MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. Results: The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1ß, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1ß, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1ß, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. Conclusion: GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.


Assuntos
Animais , Ratos , Reperfusão Miocárdica , Traumatismo por Reperfusão , Ginsenosídeos/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR
2.
Acta cir. bras ; 37(3): e370304, 2022. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1374075

Resumo

Purpose: To investigate the protective effects of Shenkang injection (SKI) on adenine-induced chronic renal failure (CRF) in rat. Methods: Sprague Dawley rats were randomly divided into five groups: control, model, and SKI groups (5, 10, 20 mL/kg). Rats in model and SKI groups were treated with adenine i.g. at a dose of 150 mg/kg every day for 12 weeks to induce CRF. Twelve weeks later, SKI was administered to the rat i.p. for four weeks. The effects of SKI on kidney injury and fibrosis were detected. Results: SKI inhibited the elevation of the urine level of N-acetyl-b-D-glucosaminidase, kidney injury molecule-1, beta-2-microglobulin, urea protein in CRF rats. The serum levels of uric acid and serum creatinine increased and albumin decreased in the model group, which was prevented by SKI. SKI inhibited the release of inflammatory cytokines and increasing the activities of antioxidant enzymes in serum. SKI inhibited the expression of transforming growth factor-β1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, collagen I, collagen III, endothelin-1, laminin in kidney of CRF rats. Conclusions: SKI protected against adenine-induced kidney injury and fibrosis and exerted anti-inflammatory, and antioxidant effects in CRF rats.


Assuntos
Animais , Ratos , Fibrose , Ratos Sprague-Dawley , Falência Renal Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA