Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci. agric ; 79(3): e20200321, 2022. ilus
Artigo em Inglês | VETINDEX | ID: biblio-1290200

Resumo

Acerola bushes were observed showing symptoms of shoot proliferation, generalized stunting, yellowing and decline. Since these symptoms are typically induced by phytoplasmas, this survey was carried out with the aim of detecting, identifying and classifying the supposed phytoplasma present in symptomatic bushes. Total DNA was extracted from symptomatic and asymptomatic samples and used in nested PCR conducted by the primer pairs R16mF2/mR1 followed by R16F2n/R2. Amplifications of expected genomic fragments of 1.2 kb revealed the presence of phytoplasma in 73 % of the symptomatic samples. Molecular analyses, using computer-simulated RFLP patterns, similarity coefficient calculation and phylogenetic analysis allowed for classifying the bacterium as a 'Candidatus Phytoplasma pruni' - related strain (subgroup 16SrIII-F). The phytoplasma induced the same symptoms in healthy acerola plants inoculated by grafting and showed molecular identity with the strain identified in naturally infected bushes. Although various strains belonging to distinct subgroups within the 16SrIII group have been previously identified in Brazil, this is the first report of the presence of a representative of the 16SrIII-F subgroup in the Brazilian agroecosystem. Considering that phytoplasmas can be systemically distributed throughout the plant and acerola plants are vegetatively propagated, it is recommended that propagation material be obtained from mother plants free of the pathogen.


Assuntos
Tenericutes , Malpighiaceae/microbiologia , Doenças por Fitoplasmas/genética , Reação em Cadeia da Polimerase
2.
Sci. agric ; 79(5): e20200277, 2022. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1341697

Resumo

Physalis is an herbaceous species native to the Andes region. Currently, it is cultivated in various Brazilian states due to the economic interest of growers for this new fruit. Physalis plants grown in the field showed symptoms of shoot proliferation, leaf malformation, and chlorosis. Since these symptoms are commonly induced by phytoplasmas, this study investigated to confirm the presence of these prokaryotes in symptomatic plants. After DNA extraction from symptomatic and asymptomatic plants, phytoplasmas were found in all affected plants through the nested PCR. Examination by transmission electron microscopy (TEM) using appropriately prepared segments of leaf veins allowed the visualization of typical pleomorphic cells of phytoplasmas in the phloem of symptomatic plants. The computer-simulated RFLP patterns and the phylogenetic analysis allowed identifying the detected phytoplasmas as a 'Candidatus Phytoplasma fraxini'-related strain belonging to the 16SrVII-B subgroup. Moreover, physalis was identified as an additional host species for phytoplasmas in the 16SrVII group, expanding the current knowledge on the host range of phytoplasmas in this group.


Assuntos
Physalis/microbiologia , Floema/microbiologia , Doenças por Fitoplasmas/genética , Reação em Cadeia da Polimerase , Microscopia Eletrônica de Transmissão
3.
Sci. agric ; 76(3): 232-236, May-June 2019. ilus
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1497781

Resumo

Momordica charantia (bitter melon) presents two distinct types or varieties, known as wild type and commercial type. Plants of the wild type are hosts of a phytoplasma of the group 16SrIII-J, which is associated with a disease known as witches’ broom. However, this disease has not yet been reported in commercial bitter melon. Thus, symptomatic plants of the commercial type were analyzed in order to demonstrate the association between phytoplasmas and disease. In further assays, strains found in symptomatic plants of the commercial type were subjected to analysis of sequences of the secY gene to determine the extent of genetic diversity. Amplification of DNA fragments from genes 16Sr rRNA (1.2Kb) and secY (1.6Kb) revealed association of phytoplasma with symptomatic plants of the commercial type. Virtual Restriction Fragment Length Polymorphism (RFLP) analysis identified this phytoplasma as a member of the subgroup 16SrIII-J. Phylogenetic analysis showed that the phytoplasma was closely related to the representative of the 16SrIII-J subgroup. Molecular analysis indicated that the secY gene, in spite of the greater genetic variation compared with 16S rRNA gene, did not separate strains of the phytoplasma of the subgroup 16SrIII-J among those strains present in M. charantia.

4.
Sci. agric. ; 76(3): 232-236, May-June 2019. ilus
Artigo em Inglês | VETINDEX | ID: vti-740874

Resumo

Momordica charantia (bitter melon) presents two distinct types or varieties, known as wild type and commercial type. Plants of the wild type are hosts of a phytoplasma of the group 16SrIII-J, which is associated with a disease known as witches broom. However, this disease has not yet been reported in commercial bitter melon. Thus, symptomatic plants of the commercial type were analyzed in order to demonstrate the association between phytoplasmas and disease. In further assays, strains found in symptomatic plants of the commercial type were subjected to analysis of sequences of the secY gene to determine the extent of genetic diversity. Amplification of DNA fragments from genes 16Sr rRNA (1.2Kb) and secY (1.6Kb) revealed association of phytoplasma with symptomatic plants of the commercial type. Virtual Restriction Fragment Length Polymorphism (RFLP) analysis identified this phytoplasma as a member of the subgroup 16SrIII-J. Phylogenetic analysis showed that the phytoplasma was closely related to the representative of the 16SrIII-J subgroup. Molecular analysis indicated that the secY gene, in spite of the greater genetic variation compared with 16S rRNA gene, did not separate strains of the phytoplasma of the subgroup 16SrIII-J among those strains present in M. charantia.(AU)

5.
Sci. agric ; 76(1): 47-50, Jan.-Feb.2019. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1497755

Resumo

Sesame (Sesamum indicum L.) plants exhibiting symptoms of phyllody disease were observed in commercial fields in Paraguay. The symptoms were indicative of infection by phytoplasmas. Thus, the present study investigated the association between affected plants and phytoplasma, which was later analyzed using molecular and phylogenetic methods. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR assays using primers R16SN910601/R16SN011119 and R16F2n/16R2. Amplified products of 1.2 Kb revealed the presence of phytoplasma in all diseased plants, and electron microscopy confirmed the presence of phytoplasmas within phloem vessels. Nucleotide sequences from sesame phytoplasma shared 99 % similarity with phytoplasmas belonging to group 16SrI. Computer-simulated RFLP indicated that the detected phytoplasma is representative of the 16SrI-B, therefore, a Candidatus Phytoplasma asteris-related strain. Phylogenetic analysis was in agreement with virtual RFLP. Our findings expand the current knowledge regarding distribution of representatives of the aster yellows group in a new agroecosystem and implicate sesame as a new host of 16SrI-B phytoplasma in Latin America.


Assuntos
Filogenia , Floema/microbiologia , Sesamum , Tenericutes , Paraguai , Reação em Cadeia da Polimerase
6.
Sci. agric. ; 76(1): 47-50, Jan.-Feb.2019. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-736407

Resumo

Sesame (Sesamum indicum L.) plants exhibiting symptoms of phyllody disease were observed in commercial fields in Paraguay. The symptoms were indicative of infection by phytoplasmas. Thus, the present study investigated the association between affected plants and phytoplasma, which was later analyzed using molecular and phylogenetic methods. Total DNA was extracted from symptomatic and asymptomatic plants and used in nested PCR assays using primers R16SN910601/R16SN011119 and R16F2n/16R2. Amplified products of 1.2 Kb revealed the presence of phytoplasma in all diseased plants, and electron microscopy confirmed the presence of phytoplasmas within phloem vessels. Nucleotide sequences from sesame phytoplasma shared 99 % similarity with phytoplasmas belonging to group 16SrI. Computer-simulated RFLP indicated that the detected phytoplasma is representative of the 16SrI-B, therefore, a Candidatus Phytoplasma asteris-related strain. Phylogenetic analysis was in agreement with virtual RFLP. Our findings expand the current knowledge regarding distribution of representatives of the aster yellows group in a new agroecosystem and implicate sesame as a new host of 16SrI-B phytoplasma in Latin America.(AU)


Assuntos
Sesamum , Tenericutes , Filogenia , Floema/microbiologia , Reação em Cadeia da Polimerase , Paraguai
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA