Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Intervalo de ano de publicação
1.
Anim. Reprod. (Online) ; 13(3): l2990-299, jul.-set. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1461230

Resumo

Postpartum anovulation is a natural process that is observed in most mammals, including women. In lactating dairy cows, the interval from calving to first ovulation typically averages 4 to 5 weeks, but a substantial proportion of cows have not resumed estrous cyclicity by 60 days postpartum. Extended delay in resumption of first postpartum ovulation is known to exert long-lasting detrimental effects on fertility in dairy cows including the lack of spontaneous estrus and subsequent timely insemination postpartum, but when anovular cows have the estrous cycle synchronized for artificial insemination (AI), still pregnancy per AI is reduced and the risk of pregnancy loss increased. Many risk factors exist for extended postpartum anovulatory periods such as negative nutrient balance and diseases, and these risk factors are also known to depress fertility by themselves. A key feature in anovular cows when inseminated is that they develop the ovulatory follicle under subluteal or low concentrations of progesterone. Progesterone from the corpus luteum is pivotal for follicle development, oocyte competence, embryo growth, and endometrial function; however, many of these effects exerted by progesterone are mediated either by secretion of gonadotropins influencing follicular function and oocyte competence or by endometrial histotroph secretion influencing embryo/conceptus growth and developmental biology


Assuntos
Feminino , Animais , Bovinos , Bovinos/embriologia , Infertilidade Feminina/classificação , Infertilidade Feminina/complicações , Infertilidade Feminina/diagnóstico , Ovulação , Progesterona
2.
Anim. Reprod. ; 13(3): l2990, jul.-set. 2016. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-13195

Resumo

Postpartum anovulation is a natural process that is observed in most mammals, including women. In lactating dairy cows, the interval from calving to first ovulation typically averages 4 to 5 weeks, but a substantial proportion of cows have not resumed estrous cyclicity by 60 days postpartum. Extended delay in resumption of first postpartum ovulation is known to exert long-lasting detrimental effects on fertility in dairy cows including the lack of spontaneous estrus and subsequent timely insemination postpartum, but when anovular cows have the estrous cycle synchronized for artificial insemination (AI), still pregnancy per AI is reduced and the risk of pregnancy loss increased. Many risk factors exist for extended postpartum anovulatory periods such as negative nutrient balance and diseases, and these risk factors are also known to depress fertility by themselves. A key feature in anovular cows when inseminated is that they develop the ovulatory follicle under subluteal or low concentrations of progesterone. Progesterone from the corpus luteum is pivotal for follicle development, oocyte competence, embryo growth, and endometrial function; however, many of these effects exerted by progesterone are mediated either by secretion of gonadotropins influencing follicular function and oocyte competence or by endometrial histotroph secretion influencing embryo/conceptus growth and developmental biology…(AU)


Assuntos
Animais , Feminino , Bovinos , Infertilidade Feminina/classificação , Infertilidade Feminina/complicações , Infertilidade Feminina/diagnóstico , Bovinos/embriologia , Ovulação , Progesterona
3.
Anim. Reprod. (Online) ; 9(3): 260-272, 2012.
Artigo em Inglês | VETINDEX | ID: biblio-1461701

Resumo

During early postpartum, high-producing dairy cows undergo a period of extensive tissue catabolism because of negative nutrien t balance. Homeorrhetic controls assure that nutrients are partitioned to favor lactation at the same time that homeostasis secures survival. However, unrestrained metabolic disturbances often lead to diseases which, in turn, dramatically decrease both productive and reproductive performance. Negative nutrient balance ha s been associated with compromised immune and reproductive functions in dairy cows. Low circulating concentrations of glucose and insulin associated with elevated concentrations of non-esterified fatty acids and ketone bodies postpartum have disruptive and detrimental effects on the oocyte, granulosa and immune cells. Negative nutrient balance is associated with changes in the pattern of ovarian follicle growth which can indirectly affect oocyte quality. Some of this disruption seems to be the result of endocrine and biochemical changes that alter the micro- environment of the growing and maturing oocyte. In addition, cows under negative nutrient balance have extended periods of anovulation. Postpartum anestrus, as well as infertility, is magnified by losses of body condition during the early postpartum period. The underlying mechanism for resumption of ovulatory cycles seems to be associated with metabolic signals and regulatory hormones primarily insulin and insulin- like growth factor (IGF)-1, which link nutritional status with gonadotropin secretion, recoupling of the growth hormone-IGF system, and follicle maturation and ovulation. Feeding diets th at promote increases in plasma glucose and insulin may improve the metabolic and endocrine status of cows in early lactation. Furthermore, fertility in postpartum cows is also determined by uterine health. Reductions in circulating concentrations of Ca and antioxidant vitamins around parturition are also linked with impaired immune competence and result in greater risk of uterine diseases that impair reproduction. Specific nutrients and dietary ingredients have been implicated to affect reproduction in cattle. Excess intake of dietary protein has been suggested as detrimental to fertility, although feeding excess of dietary protein can no longer be justified. Addition of moderate amounts of supplemental fat to the diet improves caloric intake, modulates prostaglandin F2  secretion by the uterus, affects ovarian dynamics, enhances luteal function and embryo quality, and has moderate positive effects on fertility. More specifically, some fatty acids might impact fertilization rate and embryo quality in dairy cows. On the contrary, some dietary ingredients, such as gossypol, when ingested in large quantities decrease fertility of dairy cows because of its negative effects on embryo quality and pregnancy maintenance.


Assuntos
Animais , Dieta , Homeostase/fisiologia , Metabolismo/fisiologia , Oócitos/citologia , Bovinos/classificação , Ciências da Nutrição Animal
4.
Anim. Reprod. ; 9(3): 260-272, 2012.
Artigo em Inglês | VETINDEX | ID: vti-8337

Resumo

During early postpartum, high-producing dairy cows undergo a period of extensive tissue catabolism because of negative nutrien t balance. Homeorrhetic controls assure that nutrients are partitioned to favor lactation at the same time that homeostasis secures survival. However, unrestrained metabolic disturbances often lead to diseases which, in turn, dramatically decrease both productive and reproductive performance. Negative nutrient balance ha s been associated with compromised immune and reproductive functions in dairy cows. Low circulating concentrations of glucose and insulin associated with elevated concentrations of non-esterified fatty acids and ketone bodies postpartum have disruptive and detrimental effects on the oocyte, granulosa and immune cells. Negative nutrient balance is associated with changes in the pattern of ovarian follicle growth which can indirectly affect oocyte quality. Some of this disruption seems to be the result of endocrine and biochemical changes that alter the micro- environment of the growing and maturing oocyte. In addition, cows under negative nutrient balance have extended periods of anovulation. Postpartum anestrus, as well as infertility, is magnified by losses of body condition during the early postpartum period. The underlying mechanism for resumption of ovulatory cycles seems to be associated with metabolic signals and regulatory hormones primarily insulin and insulin- like growth factor (IGF)-1, which link nutritional status with gonadotropin secretion, recoupling of the growth hormone-IGF system, and follicle maturation and ovulation. Feeding diets th at promote increases in plasma glucose and insulin may improve the metabolic and endocrine status of cows in early lactation. Furthermore, fertility in postpartum cows is also determined by uterine health. Reductions in circulating concentrations of Ca and antioxidant vitamins around parturition are also linked with impaired immune competence and result in greater risk of uterine diseases that impair reproduction. Specific nutrients and dietary ingredients have been implicated to affect reproduction in cattle. Excess intake of dietary protein has been suggested as detrimental to fertility, although feeding excess of dietary protein can no longer be justified. Addition of moderate amounts of supplemental fat to the diet improves caloric intake, modulates prostaglandin F2  secretion by the uterus, affects ovarian dynamics, enhances luteal function and embryo quality, and has moderate positive effects on fertility. More specifically, some fatty acids might impact fertilization rate and embryo quality in dairy cows. On the contrary, some dietary ingredients, such as gossypol, when ingested in large quantities decrease fertility of dairy cows because of its negative effects on embryo quality and pregnancy maintenance.(AU)


Assuntos
Animais , Metabolismo/fisiologia , Homeostase/fisiologia , Oócitos/citologia , Dieta , Bovinos/classificação , Ciências da Nutrição Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA