Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J. venom. anim. toxins incl. trop. dis ; 28: e20210056, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360567

Resumo

The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.(AU)


Assuntos
Materiais Biocompatíveis , Biopolímeros , Colágeno , Terapia com Luz de Baixa Intensidade
2.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484791

Resumo

Abstract Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.

3.
J. venom. anim. toxins incl. trop. dis ; 25: e20190038, 2019. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1040381

Resumo

Fibrin biopolymers, previously referred as "fibrin glue" or "fibrin sealants", are natural biomaterials with diverse applications on health. They have hemostatic, adhesive, sealant, scaffold and drug delivery properties and have become widely used in medical and dental procedures. Historically, these biomaterials are produced from human fibrinogen and human or animal thrombin, and the possibility of transmission of infectious diseases by human blood is not ruled out. In the 1990s, to overcome this problem, a new heterologous biomaterial composed of a thrombin-like enzyme purified from Crotalus durissus terrificus venom and a cryoprecipitate rich in fibrinogen extracted from buffaloes Bubalus bubalis blood has been proposed. Therefore, a systematic review of studies on exclusively heterologous fibrin sealants published between 1989 and 2018 was carried out using the following databases: PubMed, SciELO and Google Scholar. The keyword used was "heterologous fibrin sealant". The search resulted in 35 scientific papers in PubMed, four in SciELO and 674 in Google Scholar. After applying the inclusion/exclusion criteria and complete reading of the articles, 30 studies were selected, which formed the basis of this systematic review. It has been observed that the only completely heterologous sealant is the one produced by CEVAP/UNESP. This heterologous biopolymer is proven effective by several studies published in refereed scientific journals. In addition, clinical trials phase I/II for the treatment of chronic venous ulcers authorized by the Brazilian Health Regulatory Agency (ANVISA) were completed. Preliminary results have indicated a safe and promising effective product. Phase III clinical trials will be proposed and required to validate these preliminary findings.(AU)


Assuntos
Biopolímeros , Fibrina , Hemostáticos , Trombina
4.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e.20190038, Nov. 11, 2019. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-24652

Resumo

Fibrin biopolymers, previously referred as “fibrin glue” or “fibrin sealants”, are natural biomaterials with diverse applications on health. They have hemostatic, adhesive, sealant, scaffold and drug delivery properties and have become widely used in medical and dental procedures. Historically, these biomaterials are produced from human fibrinogen and human or animal thrombin, and the possibility of transmission of infectious diseases by human blood is not ruled out. In the 1990s, to overcome this problem, a new heterologous biomaterial composed of a thrombin-like enzyme purified from Crotalus durissus terrificus venom and a cryoprecipitate rich in fibrinogen extracted from buffaloes Bubalus bubalis blood has been proposed. Therefore, a systematic review of studies on exclusively heterologous fibrin sealants published between 1989 and 2018 was carried out using the following databases: PubMed, SciELO and Google Scholar. The keyword used was “heterologous fibrin sealant”. The search resulted in 35 scientific papers in PubMed, four in SciELO and 674 in Google Scholar. After applying the inclusion/exclusion criteria and complete reading of the articles, 30 studies were selected, which formed the basis of this systematic review. It has been observed that the only completely heterologous sealant is the one produced by CEVAP/UNESP. This heterologous biopolymer is proven effective by several studies published in refereed scientific journals. In addition, clinical trials phase I/II for the treatment of chronic venous ulcers authorized by the Brazilian Health Regulatory Agency (ANVISA) were completed. Preliminary results have indicated a safe and promising effective product. Phase III clinical trials will be proposed and required to validate these preliminary findings.(AU)


Assuntos
Biopolímeros , Fibrina , Hemostáticos , Alicerces Teciduais , Venenos de Crotalídeos/uso terapêutico
5.
Acta cir. bras. ; 33(4): 324-332, abr. 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-734646

Resumo

Purpose: To investigate if the inorganic bovine bone matrix changes the bone formation in rats submitted to inhalation of cigarette smoke. Methods: Twenty Wistar rats were divided into two groups: Cigarette Clot Group (CCG), which in the inhalation chamber received the smoke of 10 cigarettes, 3 times a day, 10 minutes, for 30 days and had the surgical cavity filled by clot; Cigarette Biomaterial Group (CBG), submitted to the same inhalation technique but with the cavity filled by biomaterial. Results: In CCG there was a significant difference of new bone tissue in the analyzed periods (15 and 45 days), and in 15 days, there was 4.8 ± 0.42 of bone formed and 11.73 ± 0.59 (p <0.05) in 45 days. The CBG also showed a significant difference between the periods of 15 to 45 days, being respectively 6.16 ± 0.30 and 11.60 ± 0.61. However, when the groups were compared, within the same analyzed periods, a significant difference was observed only in the period of 15 days, with the new bone percentage being greater in the CBG. Conclusion: The bone matrix acted as an osteoinductive biomaterial, biocompatible and aided in the repair process, mainly in the initial period of recovery.(AU)


Assuntos
Animais , Masculino , Ratos , Matriz Óssea/transplante , Regeneração Óssea , Materiais Biocompatíveis/uso terapêutico , Xenoenxertos , Produtos do Tabaco/efeitos adversos , Ratos Wistar
6.
Acta cir. bras. ; 32(8): 617-625, Aug. 2017. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-17720

Resumo

Purpose: To evaluated the tubulization technique with standard and inside-out vein, filled or not with platelet-rich plasma (PRP), in sciatic nerve repair. Methods: Seventy male Wistar rats were randomly divided into five groups: IOVNF (Inside-Out Vein with No Filling); IOVPRP (Inside-Out Vein filled with PRP); SVNF (Standard Vein with No Filling); SVPRP (Standard Vein filled with PRP); Sham (Control). The left external jugular vein was used as graft in a 10 mm nervous gap. Results: In the morphological analysis of all groups, myelinated nerve fibers with evident myelin sheath, neoformation of the epineurium and perineurium, organization of intraneural fascicles and blood vessels were observed. In the morphometry of the distal stump fibers, SVPRP group had the highest means regarding fiber diameter (3.63±0.42 m), axon diameter (2.37±0.31 m) and myelin sheath area (11.70±0.84 m2). IOVPRP group had the highest means regarding axon area (4.39±1.16 m2) and myelin sheath thickness (0.80±0.19 m). As for values of the fiber area, IOVNF group shows highest means (15.54±0.67 m2), but are still lower than the values of the Sham group. Conclusion: The graft filled with platelet-rich plasma, with use standard (SVPRP) or inside-out vein (IOVPRP), promoted the improvement in axonal regeneration on sciatic nerve injury.(AU)


Assuntos
Animais , Ratos , Ratos/fisiologia , Plasma Rico em Plaquetas/química , Plasma Rico em Plaquetas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA