Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci. agric. ; 78(6): 1-9, 2021. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-31246

Resumo

The biotrophic fungus Hemileia vastatrix causes coffee leaf rust (CLR), one of the most devastating diseases in Coffea arabica. Coffee, like other plants, has developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs) have been identified in certain plants as candidates for resistance (R) genes or membrane receptors that activate the R genes. The RGAs identified in different plants possess conserved domains that play specific roles in the fight against pathogens. Despite the importance of RGAs, in coffee plants these genes and other molecular mechanisms of disease resistance are still unknown. This study aimed to sequence and characterize candidate genes from coffee plants with the potential for involvement in resistance to H. vastatrix . Sequencing was performed based on a library of bacterial artificial chromosomes (BAC) of the coffee clone Híbrido de Timor (HdT) CIFC 832/2 and screened using a functional marker. Two RGAs, HdT_LRR_RLK1 and HdT_LRR_RLK2, containing the motif of leucine-rich repeat-like kinase (LRR-RLK) were identified. Based on the presence or absence of the HdT_LRR_RLK2 RGA in a number of differential coffee clones containing different combinations of the rust resistance gene, these RGAs did not correspond to any resistance gene already characterized (SH1-9). These genes were also analyzed using qPCR and demonstrated a major expression peak at 24 h after inoculation in both the compatible and incompatible interactions between coffee and H. vastatrix . These results are valuable information for breeding programs aimed at developing CLR-resistant cultivars, in addition to enabling a better understanding of the interactions between coffee and H. vastatrix .(AU)


Assuntos
Fungos/patogenicidade , Coffea/genética , Coffea/imunologia
2.
Sci. agric ; 78(4): 1-8, 2021. ilus, graf, tab
Artigo em Inglês | VETINDEX | ID: biblio-1497961

Resumo

Genomic selection (GS) emphasizes the simultaneous prediction of the genetic effects of thousands of scattered markers over the genome. Several statistical methodologies have been used in GS for the prediction of genetic merit. In general, such methodologies require certain assumptions about the data, such as the normality of the distribution of phenotypic values. To circumvent the non-normality of phenotypic values, the literature suggests the use of Bayesian Generalized Linear Regression (GBLASSO). Another alternative is the models based on machine learning, represented by methodologies such as Artificial Neural Networks (ANN), Decision Trees (DT) and related possible refinements such as Bagging, Random Forest and Boosting. This study aimed to use DT and its refinements for predicting resistance to orange rust in Arabica coffee. Additionally, DT and its refinements were used to identify the importance of markers related to the characteristic of interest. The results were compared with those from GBLASSO and ANN. Data on coffee rust resistance of 245 Arabica coffee plants genotyped for 137 markers were used. The DT refinements presented equal or inferior values of Apparent Error Rate compared to those obtained by DT, GBLASSO, and ANN. Moreover, DT refinements were able to identify important markers for the characteristic of interest. Out of 14 of the most important markers analyzed in each methodology, 9.3 markers on average were in regions of quantitative trait loci (QTLs) related to resistance to disease listed in the literature.


Assuntos
Coffea/genética , Coffea/parasitologia , Fungos/crescimento & desenvolvimento , Fungos/patogenicidade , Inteligência Artificial
3.
Sci. agric ; 78(6): 1-9, 2021. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497988

Resumo

The biotrophic fungus Hemileia vastatrix causes coffee leaf rust (CLR), one of the most devastating diseases in Coffea arabica. Coffee, like other plants, has developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs) have been identified in certain plants as candidates for resistance (R) genes or membrane receptors that activate the R genes. The RGAs identified in different plants possess conserved domains that play specific roles in the fight against pathogens. Despite the importance of RGAs, in coffee plants these genes and other molecular mechanisms of disease resistance are still unknown. This study aimed to sequence and characterize candidate genes from coffee plants with the potential for involvement in resistance to H. vastatrix . Sequencing was performed based on a library of bacterial artificial chromosomes (BAC) of the coffee clone Híbrido de Timor (HdT) CIFC 832/2 and screened using a functional marker. Two RGAs, HdT_LRR_RLK1 and HdT_LRR_RLK2, containing the motif of leucine-rich repeat-like kinase (LRR-RLK) were identified. Based on the presence or absence of the HdT_LRR_RLK2 RGA in a number of differential coffee clones containing different combinations of the rust resistance gene, these RGAs did not correspond to any resistance gene already characterized (SH1-9). These genes were also analyzed using qPCR and demonstrated a major expression peak at 24 h after inoculation in both the compatible and incompatible interactions between coffee and H. vastatrix . These results are valuable information for breeding programs aimed at developing CLR-resistant cultivars, in addition to enabling a better understanding of the interactions between coffee and H. vastatrix .


Assuntos
Coffea/genética , Coffea/imunologia , Fungos/patogenicidade
4.
Sci. agric. ; 78(4): 1-8, 2021. ilus, graf, tab
Artigo em Inglês | VETINDEX | ID: vti-31520

Resumo

Genomic selection (GS) emphasizes the simultaneous prediction of the genetic effects of thousands of scattered markers over the genome. Several statistical methodologies have been used in GS for the prediction of genetic merit. In general, such methodologies require certain assumptions about the data, such as the normality of the distribution of phenotypic values. To circumvent the non-normality of phenotypic values, the literature suggests the use of Bayesian Generalized Linear Regression (GBLASSO). Another alternative is the models based on machine learning, represented by methodologies such as Artificial Neural Networks (ANN), Decision Trees (DT) and related possible refinements such as Bagging, Random Forest and Boosting. This study aimed to use DT and its refinements for predicting resistance to orange rust in Arabica coffee. Additionally, DT and its refinements were used to identify the importance of markers related to the characteristic of interest. The results were compared with those from GBLASSO and ANN. Data on coffee rust resistance of 245 Arabica coffee plants genotyped for 137 markers were used. The DT refinements presented equal or inferior values of Apparent Error Rate compared to those obtained by DT, GBLASSO, and ANN. Moreover, DT refinements were able to identify important markers for the characteristic of interest. Out of 14 of the most important markers analyzed in each methodology, 9.3 markers on average were in regions of quantitative trait loci (QTLs) related to resistance to disease listed in the literature.(AU)


Assuntos
Coffea/genética , Coffea/parasitologia , Fungos/crescimento & desenvolvimento , Fungos/patogenicidade , Inteligência Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA