Resumo
The knowledge about the effect of salinity on the physiological mechanism of bivalve reproduction is fundamental to improve production strategies in hatcheries. The present work evaluated the influence of different salinity concentrations (15, 20, 25, 30, 35 and 40 gâ L−1) on pre- and post-fertilization development processes in the clam, Anomalocardia flexuosa, oocytes obtained by stripping. Salinity directly interfered with the germinal vesicle breakdown (GVBD) rate and in the cellular stability of unfertilized oocytes. Salinity concentrations between 30 and 35 gâ L−1 provided better percentages of stable GVBD within 120 min, and incubation of oocytes in the salinity range of 30-35 gâ L−1 for a time interval of 80-120 min provided > 80% GVBD. In the post-fertilization analysis, salinity affected the rate of the extrusion of the first and second polar bodies (PB1 and PB2). The release of 50% of the PBs was faster at a salinity of 35 gâ L−1, with an estimated time of 10 min for PB1 and 30 min for PB2. Thus, chromosome manipulation methodologies aiming triploids should be applied at 35 gâ L−1 salinity, with application of post-fertilization shock before 10 min for PB1 retention or before 30 min for PB2 retention.(AU)
Assuntos
Animais , Feminino , Cardiidae/química , Fertilização/efeitos dos fármacos , SalinidadeResumo
The females of yellowtail tetra (Astyanax lacustris), known as the freshwater sardine, are approximately 1.33 times larger than males, and thus, all-female monosex culture would increase production and reduce size variability. The present work aimed to identify the optimal dose of 17α-methyltestosterone (MT) to be used in the masculinization of A. lacustris for indirect sex reversal. Three different concentrations of MT (20, 40, and 60 mg/kg of feed in the diet) were fed to the fry for 30 days. Thirty adult individuals from each treatment, including the control (0 mg MT/kg), were evaluated for gonadal development, morphological and histological sexual identification, zootechnical performance, and the possible genotoxic effect caused by prolonged exposure to MT. MT significantly (P<0.01) affected the differentiation of the gonads, with the presence of possible inhibitory effects in all treatments. Intersex individuals were present in the 20 and 60 mg MT/kg treatments. All treatments were able to masculinize A. lacustris and the treatment with the lowest hormone concentration produced the highest percentage of males 76.7%, while the control had 46.7% males. The presence of erythrocyte nuclear alterations indicated a possible cytotoxic effect of MT in treatments 40 and 60 mg MT/kg, however, the use of the hormone did not affect the growth and the survival of the individuals. Thus, the use of MT is a viable option for obtaining neomales as a first step into the production of all-female progenies.(AU)