Resumo
Sugarcane (Saccharum spp.) harvested without burning provides a substantial amount of remains (trash) on soil profiles which can be decomposed and release nutrients contributing to reduce fertilizer needs. The contribution of nitrogen (N) from sugarcane plant residues and fertilizer in sugarcane nutrition was assessed. Plant cane treatments were micro plots of 15N-labeled urea, sugarcane trash and root system; the last two to simulate the previous crop residues incorporated into the soil after crop renewal. For ratoons, N-ammonium nitrate (N-AN) micro plots, 150 kg ha-1 of N-AN and control (0 kg ha-1) were set up to evaluate the contribution of trash in N supply and quantify the effects of N-fertilizer on N-trash mineralization. The N balances derived from each 15N source were calculated after four crops and resulted in: 15N-urea applied at planting, 31 % was recovered by plant cane, 12 % by the following ratoons, 20 % remained in the soil and 37 % was not found in the soil-system (NOC). For crop residues 15N-trash + roots 26 % was recovered by sugarcane, 51 % remained in soil, and 23 % was NOC. N-fertilizer applied to ratoons nearly doubled the amount of N from green harvest residues recovered by sugarcane; 17 vs. 31 %. Water balances and crop evapotranspiration were correlated with 15N-sources recoveries and cumulative N recovery presented a positive correlation with evapotranspiration (2005 to 2009). The 15N balances indicated that crop residues are supplementary sources of N for sugarcane and may contribute to reduce N fertilizer needs since trash is annually added to the soil.
Resumo
Sugarcane (Saccharum spp.) crops provide carbon (C) for soil through straw and root system decomposition. Recently, however, sugarcane producers are considering straw to be removed for electricity or second generation ethanol production. To elucidate the role of straw and root system on the carbon supply into the soil, the biomass inputs from sugarcane straw (tops and dry leaves) and from root system (rhizomes and roots) were quantified, and its contribution to provide C to the soil was estimated. Three trials were carried out in the State of Sao Paulo, Brazil, from 2006 to 2009. All sites were cultivated with the variety SP81 3250 under the green sugarcane harvest. Yearly, post-harvest sugarcane residues (tops, dry leaves, roots and rhizomes) were sampled; weighted and dried for the dry mass (DM) production to be estimated. On average, DM root system production was 4.6 Mg ha-1 year-1 (1.5 Mg C ha-1 year-1) and 11.5 Mg ha-1 year-1 (5.1 Mg C ha-1 year-1) of straw. In plant cane, 35 % of the total sugarcane DM was allocated into the root system, declining to 20 % in the third ratoon. The estimate of potential allocation of sugarcane residues to soil organic C was 1.1 t ha-1 year-1; out of which 33 % was from root system and 67 % from straw. The participation of root system should be higher if soil layer is evaluated, a deeper soil layer, if root exudates are accounted and if the period of higher production of roots is considered.
Resumo
Sugarcane (Saccharum spp.) crops provide carbon (C) for soil through straw and root system decomposition. Recently, however, sugarcane producers are considering straw to be removed for electricity or second generation ethanol production. To elucidate the role of straw and root system on the carbon supply into the soil, the biomass inputs from sugarcane straw (tops and dry leaves) and from root system (rhizomes and roots) were quantified, and its contribution to provide C to the soil was estimated. Three trials were carried out in the State of Sao Paulo, Brazil, from 2006 to 2009. All sites were cultivated with the variety SP81 3250 under the green sugarcane harvest. Yearly, post-harvest sugarcane residues (tops, dry leaves, roots and rhizomes) were sampled; weighted and dried for the dry mass (DM) production to be estimated. On average, DM root system production was 4.6 Mg ha-1 year-1 (1.5 Mg C ha-1 year-1) and 11.5 Mg ha-1 year-1 (5.1 Mg C ha-1 year-1) of straw. In plant cane, 35 % of the total sugarcane DM was allocated into the root system, declining to 20 % in the third ratoon. The estimate of potential allocation of sugarcane residues to soil organic C was 1.1 t ha-1 year-1; out of which 33 % was from root system and 67 % from straw. The participation of root system should be higher if soil layer is evaluated, a deeper soil layer, if root exudates are accounted and if the period of higher production of roots is considered.
Resumo
Sugarcane (Saccharum spp.) harvested without burning provides a substantial amount of remains (trash) on soil profiles which can be decomposed and release nutrients contributing to reduce fertilizer needs. The contribution of nitrogen (N) from sugarcane plant residues and fertilizer in sugarcane nutrition was assessed. Plant cane treatments were micro plots of 15N-labeled urea, sugarcane trash and root system; the last two to simulate the previous crop residues incorporated into the soil after crop renewal. For ratoons, N-ammonium nitrate (N-AN) micro plots, 150 kg ha-1 of N-AN and control (0 kg ha-1) were set up to evaluate the contribution of trash in N supply and quantify the effects of N-fertilizer on N-trash mineralization. The N balances derived from each 15N source were calculated after four crops and resulted in: 15N-urea applied at planting, 31 % was recovered by plant cane, 12 % by the following ratoons, 20 % remained in the soil and 37 % was not found in the soil-system (NOC). For crop residues 15N-trash + roots 26 % was recovered by sugarcane, 51 % remained in soil, and 23 % was NOC. N-fertilizer applied to ratoons nearly doubled the amount of N from green harvest residues recovered by sugarcane; 17 vs. 31 %. Water balances and crop evapotranspiration were correlated with 15N-sources recoveries and cumulative N recovery presented a positive correlation with evapotranspiration (2005 to 2009). The 15N balances indicated that crop residues are supplementary sources of N for sugarcane and may contribute to reduce N fertilizer needs since trash is annually added to the soil.
Resumo
Due to new possibilities for using sugarcane (Saccharum spp.) trash for electricity generation, and the production of 2nd generation ethanol and others chemicals, the interest for its recovery has increased. However, the question of how much trash can be removed from sugarcane field still needs to be clarified. This study evaluated the amount of dry matter, nutrients content, structural compounds and efficiency of the enzymatic hydrolysis of the hydrothermal pretreated materials for tops and dry leaves in samples from sugarcane varieties. Tops and dry leaves present differences in nutrients content and moisture. Therefore, the amount of trash to be collected should not be simply based on percentages, but also should take into account the different fractions of the crop residues. For instance, around 80 % of N, P and K were derived from tops. Therein, the environmental indicators of the entire chain of sugarcane could be benefited because more nutrients would be recycled and less mineral fertilizers might be used for sugarcane production if tops are left on the field. Further, the tops have seven times more moisture than dry leaves and higher amounts of extractives (organic compounds of low molecular weight). Moreover, as the result of yield obtained in the pretreatment steps for dry leaves were superior to the tops and the glucose yields obtained in the enzymatic hydrolysis step were similar, it can be predicted that for second generation ethanol production, it is more viable to recover parts of the dry leaves fraction, leaving the tops on the field.
Resumo
The area under mechanized sugarcane (Saccharum spp.) harvesting is expanding in Brazil, increasing the return of trash to the soil. The main questions regarding this management are: (i) after adopting unburned mechanical harvesting, how long will it take to observe decreases in fertilizer requirements, (ii) what will be the magnitude of this decrease and, (iii) the impact in the short run of removing trash for energy purposes in the nutrient cycling? This study aimed to build an N prediction model for long term assessment of the contribution of sugarcane crop residues to sugarcane nutrition and to evaluate the cycling of other nutrients derived from crop residues. Keeping crop residues over the soil will increase soil N stock and N recovery by sugarcane, reaching equilibrium after 40 years with recovery of approximately 40 kg ha-1 year-1 of N. Removing trash for energy production will decrease the potential reduction in N fertilizer requirement. Of the total nutrients in the trash, 75 % of the K2O (81 kg ha-1 year-1) and 50 % of the N (31 kg ha-1 year-1) are in the tops, indicating the importance of maintaining tops in the soil to sustain soil fertility. Because the input data employed in the simulations are representative of the conditions in Southeast Brazil, these results might not be definitive for situations not represented in the experiments used in the study, but the model produced is useful to forecast changes that occur in the soil under different trash management.
Resumo
The area under mechanized sugarcane (Saccharum spp.) harvesting is expanding in Brazil, increasing the return of trash to the soil. The main questions regarding this management are: (i) after adopting unburned mechanical harvesting, how long will it take to observe decreases in fertilizer requirements, (ii) what will be the magnitude of this decrease and, (iii) the impact in the short run of removing trash for energy purposes in the nutrient cycling? This study aimed to build an N prediction model for long term assessment of the contribution of sugarcane crop residues to sugarcane nutrition and to evaluate the cycling of other nutrients derived from crop residues. Keeping crop residues over the soil will increase soil N stock and N recovery by sugarcane, reaching equilibrium after 40 years with recovery of approximately 40 kg ha-1 year-1 of N. Removing trash for energy production will decrease the potential reduction in N fertilizer requirement. Of the total nutrients in the trash, 75 % of the K2O (81 kg ha-1 year-1) and 50 % of the N (31 kg ha-1 year-1) are in the tops, indicating the importance of maintaining tops in the soil to sustain soil fertility. Because the input data employed in the simulations are representative of the conditions in Southeast Brazil, these results might not be definitive for situations not represented in the experiments used in the study, but the model produced is useful to forecast changes that occur in the soil under different trash management.
Resumo
Due to new possibilities for using sugarcane (Saccharum spp.) trash for electricity generation, and the production of 2nd generation ethanol and others chemicals, the interest for its recovery has increased. However, the question of how much trash can be removed from sugarcane field still needs to be clarified. This study evaluated the amount of dry matter, nutrients content, structural compounds and efficiency of the enzymatic hydrolysis of the hydrothermal pretreated materials for tops and dry leaves in samples from sugarcane varieties. Tops and dry leaves present differences in nutrients content and moisture. Therefore, the amount of trash to be collected should not be simply based on percentages, but also should take into account the different fractions of the crop residues. For instance, around 80 % of N, P and K were derived from tops. Therein, the environmental indicators of the entire chain of sugarcane could be benefited because more nutrients would be recycled and less mineral fertilizers might be used for sugarcane production if tops are left on the field. Further, the tops have seven times more moisture than dry leaves and higher amounts of extractives (organic compounds of low molecular weight). Moreover, as the result of yield obtained in the pretreatment steps for dry leaves were superior to the tops and the glucose yields obtained in the enzymatic hydrolysis step were similar, it can be predicted that for second generation ethanol production, it is more viable to recover parts of the dry leaves fraction, leaving the tops on the field.
Resumo
Mechanized sugarcane (Saccharum spp.) harvest without burning has been increasingly adopted in Brazil, increasing trash availability on the field. This study aims at showing the importance of using an integrated framework tool to assess technical and economic impacts of integral harvesting and baling trash recovery strategies and different recovery rates as well as its implications in the sugarcane production, transport and processing stages. Trash recovery using baling system presents higher costs per unit of mass of recovered trash in comparison to system in which trash is harvested and transported with sugarcane stalks (integral harvesting system). However, the integrated agricultural and industrial assessment showed that recovering trash using baling system presents better economic results (higher internal rate of return and lower ethanol production cost) than the integral harvesting system for trash recovery rates higher than 30 %. Varying trash recovery fraction, stalks productivity and mean transport distance for both integral harvesting and baling systems, sensitivity analyses showed that higher trash recovery fractions associated with higher stalks yields and long transport distances favors baling system, mainly due to the reduction of bulk load density for integral harvesting system under those conditions.
Resumo
Mechanized sugarcane (Saccharum spp.) harvest without burning has been increasingly adopted in Brazil, increasing trash availability on the field. This study aims at showing the importance of using an integrated framework tool to assess technical and economic impacts of integral harvesting and baling trash recovery strategies and different recovery rates as well as its implications in the sugarcane production, transport and processing stages. Trash recovery using baling system presents higher costs per unit of mass of recovered trash in comparison to system in which trash is harvested and transported with sugarcane stalks (integral harvesting system). However, the integrated agricultural and industrial assessment showed that recovering trash using baling system presents better economic results (higher internal rate of return and lower ethanol production cost) than the integral harvesting system for trash recovery rates higher than 30 %. Varying trash recovery fraction, stalks productivity and mean transport distance for both integral harvesting and baling systems, sensitivity analyses showed that higher trash recovery fractions associated with higher stalks yields and long transport distances favors baling system, mainly due to the reduction of bulk load density for integral harvesting system under those conditions.
Resumo
A still unclear question related to sugarcane cropping refers to the low response of the planted cane to nitrogen fertilization. Two experiments were carried out in areas under a Typic Hapludox, located in Pirassununga, São Paulo State, Brazil, and an Arenic Kandiudult, located in Jaboticabal, São Paulo State, Brazil, with the objective to evaluate planted cane response to nitrogen fertilization at planting. The experimental design was organized as random blocks and treatments consisted of three N rates (40, 80, and 120 kg ha-1 N-urea) and a control without N. Nitrogen fertilizers were applied to the bottom of the planting furrow and then incorporated into the soil. During the maximum growth stage, +1 leaf samples were collected from all experimental plots to evaluate the crop nutritional status. In the Pirassununga experiment, N fertilization at planting increased N, K, Mg, and S contents in the leaves and increased the stalk yield, without effect in the technological attributes. Conversely, no stalk yield response was observed at the Jaboticabal experiment, but N fertilization benefited the stalk technological attributes. The N rates increased the sugar yield per hectare in both experiments. The highest margin of agricultural contribution was obtained at the rate of 40 kg ha-1 N.
Uma questão não esclarecida na cultura da cana-de-açúcar se refere à baixa resposta da cana planta à adubação nitrogenada de plantio. Nesse sentido, foram desenvolvidos dois experimentos em áreas cultivadas sobre um Latossolo Vermelho-Amarelo Distrófico (Pirassununga, SP) e um Latossolo Vermelho Distrófico (Jaboticabal, SP), com objetivo de avaliar a resposta da cana planta a adubação nitrogenada de plantio. O delineamento experimental foi em blocos ao acaso, e os tratamentos foram três doses de N (40, 80 e 120 kg ha-1 na forma de uréia) mais um tratamento controle sem adição de N. Os fertilizantes nitrogenados foram aplicados no fundo de sulco de plantio e incorporados ao solo. Durante a fase de máximo crescimento da cultura, foram coletadas amostras de folhas +1 em todas as parcelas experimentais para a determinação do estado nutricional. Em Pirassununga, a adubação nitrogenada de plantio aumentou as concentrações de N, K, Mg e S nas folhas diagnósticas e a produção de colmos, sem apresentar efeito nos atributos tecnológicos. Por outro lado, em Jaboticabal não houve resposta em produtividade, mas houve efeito nos atributos tecnológicos. Obtiveram-se incrementos na produção de açúcar por hectare em ambas as áreas em função da fertilização nitrogenada. A maior margem de contribuição agrícola foi obtida com a dose de 40 kg ha-1 de N.
Resumo
A still unclear question related to sugarcane cropping refers to the low response of the planted cane to nitrogen fertilization. Two experiments were carried out in areas under a Typic Hapludox, located in Pirassununga, São Paulo State, Brazil, and an Arenic Kandiudult, located in Jaboticabal, São Paulo State, Brazil, with the objective to evaluate planted cane response to nitrogen fertilization at planting. The experimental design was organized as random blocks and treatments consisted of three N rates (40, 80, and 120 kg ha-1 N-urea) and a control without N. Nitrogen fertilizers were applied to the bottom of the planting furrow and then incorporated into the soil. During the maximum growth stage, +1 leaf samples were collected from all experimental plots to evaluate the crop nutritional status. In the Pirassununga experiment, N fertilization at planting increased N, K, Mg, and S contents in the leaves and increased the stalk yield, without effect in the technological attributes. Conversely, no stalk yield response was observed at the Jaboticabal experiment, but N fertilization benefited the stalk technological attributes. The N rates increased the sugar yield per hectare in both experiments. The highest margin of agricultural contribution was obtained at the rate of 40 kg ha-1 N.
Uma questão não esclarecida na cultura da cana-de-açúcar se refere à baixa resposta da cana planta à adubação nitrogenada de plantio. Nesse sentido, foram desenvolvidos dois experimentos em áreas cultivadas sobre um Latossolo Vermelho-Amarelo Distrófico (Pirassununga, SP) e um Latossolo Vermelho Distrófico (Jaboticabal, SP), com objetivo de avaliar a resposta da cana planta a adubação nitrogenada de plantio. O delineamento experimental foi em blocos ao acaso, e os tratamentos foram três doses de N (40, 80 e 120 kg ha-1 na forma de uréia) mais um tratamento controle sem adição de N. Os fertilizantes nitrogenados foram aplicados no fundo de sulco de plantio e incorporados ao solo. Durante a fase de máximo crescimento da cultura, foram coletadas amostras de folhas +1 em todas as parcelas experimentais para a determinação do estado nutricional. Em Pirassununga, a adubação nitrogenada de plantio aumentou as concentrações de N, K, Mg e S nas folhas diagnósticas e a produção de colmos, sem apresentar efeito nos atributos tecnológicos. Por outro lado, em Jaboticabal não houve resposta em produtividade, mas houve efeito nos atributos tecnológicos. Obtiveram-se incrementos na produção de açúcar por hectare em ambas as áreas em função da fertilização nitrogenada. A maior margem de contribuição agrícola foi obtida com a dose de 40 kg ha-1 de N.
Resumo
Nitrogen losses from the soil-plant system may be influenced by herbicide applications. In order to evaluate N loss in brachiaria (Brachiaria decumbens) after application of the herbicides glyphosate and glufosinate-ammonium, an experiment was carried out in a greenhouse as a completely randomized design, with three treatments and six replicates. Treatments were as follows: i) desiccation of brachiaria-plants with glyphosate; ii) desiccation of brachiaria-plants with glufosinate-ammonium; and iii) control, without herbicide application. The plants were cultivated in 4 kg pots of sandy soil and fertilized with ammonium sulfate- 15N, (200 mg kg-1) in order to quantify the allocation of the fertilizer-N and its recovery in the soil-plant system. Plants treated with the herbicides had less N accumulation and less recovery of the fertilizer-N (15N) relative to the control. In the soil, the greatest recovery of 15N-fertilizer occurred for treatments where N was applied, possibly due to the occurrence of other N compound losses to the soil, like root exudation and root death. The total recovery of 15N-fertilizer in the soil-plant system was higher in the control than in the treated plants showing the direct action of the herbicides on nitrogen loss, and especially by the above-ground part of the brachiaria plants.
As perdas de nitrogênio no sistema solo-planta podem ser influenciadas pela aplicação de herbicidas. Com o objetivo de avaliar a perda de N do capim-Brachiaria (Brachiaria decumbens) após a aplicação dos herbicidas glifosato e glufosinato de amônio, foi realizado um experimento em casa-de-vegetação em delineamento inteiramente aleatorizado (DIA), com três tratamentos e seis repetições. Os tratamentos foram os seguintes: i) dessecação de plantas de braquiária com o herbicida glifosato; ii) dessecação de plantas de braquiária com herbicida glufosinato de amônio e iii) testemunha, sem aplicação de herbicida. As plantas foram cultivadas em vasos com 4 kg de solo arenoso e foram fertilizadas com sulfato de amônio (15N), na dose de 200 mg kg-1, com o intuito de quantificar a alocação de N-fertilizante (15N) e sua recuperação no sistema solo-planta. As plantas tratadas com os herbicidas apresentaram menor acúmulo de N e menor recuperação do N-fertilizante (15N) em relação à testemunha. No solo a maior recuperação do 15N-fertilizante ocorreu nos tratamentos em que foram aplicados os herbicidas, possivelmente, devido à ocorrência de perda de compostos nitrogenados para o solo por exsudação radicular e morte de raízes. A recuperação total do 15N-fertilizante no sistema solo-planta foi maior na testemunha que nos tratamentos, evidenciando-se a ação direta dos herbicidas nas perdas de nitrogênio, especialmente, pela parte aérea do capim-Brachiaria.
Resumo
Nitrogen losses from the soil-plant system may be influenced by herbicide applications. In order to evaluate N loss in brachiaria (Brachiaria decumbens) after application of the herbicides glyphosate and glufosinate-ammonium, an experiment was carried out in a greenhouse as a completely randomized design, with three treatments and six replicates. Treatments were as follows: i) desiccation of brachiaria-plants with glyphosate; ii) desiccation of brachiaria-plants with glufosinate-ammonium; and iii) control, without herbicide application. The plants were cultivated in 4 kg pots of sandy soil and fertilized with ammonium sulfate- 15N, (200 mg kg-1) in order to quantify the allocation of the fertilizer-N and its recovery in the soil-plant system. Plants treated with the herbicides had less N accumulation and less recovery of the fertilizer-N (15N) relative to the control. In the soil, the greatest recovery of 15N-fertilizer occurred for treatments where N was applied, possibly due to the occurrence of other N compound losses to the soil, like root exudation and root death. The total recovery of 15N-fertilizer in the soil-plant system was higher in the control than in the treated plants showing the direct action of the herbicides on nitrogen loss, and especially by the above-ground part of the brachiaria plants.
As perdas de nitrogênio no sistema solo-planta podem ser influenciadas pela aplicação de herbicidas. Com o objetivo de avaliar a perda de N do capim-Brachiaria (Brachiaria decumbens) após a aplicação dos herbicidas glifosato e glufosinato de amônio, foi realizado um experimento em casa-de-vegetação em delineamento inteiramente aleatorizado (DIA), com três tratamentos e seis repetições. Os tratamentos foram os seguintes: i) dessecação de plantas de braquiária com o herbicida glifosato; ii) dessecação de plantas de braquiária com herbicida glufosinato de amônio e iii) testemunha, sem aplicação de herbicida. As plantas foram cultivadas em vasos com 4 kg de solo arenoso e foram fertilizadas com sulfato de amônio (15N), na dose de 200 mg kg-1, com o intuito de quantificar a alocação de N-fertilizante (15N) e sua recuperação no sistema solo-planta. As plantas tratadas com os herbicidas apresentaram menor acúmulo de N e menor recuperação do N-fertilizante (15N) em relação à testemunha. No solo a maior recuperação do 15N-fertilizante ocorreu nos tratamentos em que foram aplicados os herbicidas, possivelmente, devido à ocorrência de perda de compostos nitrogenados para o solo por exsudação radicular e morte de raízes. A recuperação total do 15N-fertilizante no sistema solo-planta foi maior na testemunha que nos tratamentos, evidenciando-se a ação direta dos herbicidas nas perdas de nitrogênio, especialmente, pela parte aérea do capim-Brachiaria.