Resumo
Venous ulcers are the main causes of chronic lower-limb ulcers. The healing difficulties encourage the research and development of new products in order to achieve better therapeutic results. Fibrin sealant is one of these alternatives. Besides being a validated scaffold and drug delivery system, it possesses excellent healing properties. This review covered the last 25 years of the literature and showed that the fibrin sealant is used in various clinical situations to promote the healing of different types of ulcers, especially chronic ones. These are mostly venous in origin and usually does not respond to conventional treatment. Commercially, only the homologous fibrin sealants obtained from human blood are available, which are highly efficient but very expensive. The heterologous fibrin sealant is a non-commercial experimental low-cost product and easily produced due to the abundance of raw material. The phase I/II clinical trial is already completed and showed that the product is safe and promisingly efficacious for the treatment of chronic venous ulcers. In addition, clinical proteomic strategies to assess disease prognosis have been increasingly used. By analyzing liquid samples from the wounds through proteomic strategies, it is possible to predict before treatment which ulcers will evolve favorably and which ones will be difficult to heal. This prognosis is only possible by evaluating the expression of isolated proteins in exudates and analysis using label-free strategies for shotgun. Multicentric clinical trials will be required to evaluate the efficacy of fibrin sealant to treat chronic ulcers, as well as to validate the proteomic strategies to assess prognosis.(AU)
Assuntos
Animais , Úlcera , Úlcera Varicosa/diagnóstico , Fibrina , Proteômica , Biopolímeros/análiseResumo
Venous ulcers are the main causes of chronic lower-limb ulcers. The healing difficulties encourage the research and development of new products in order to achieve better therapeutic results. Fibrin sealant is one of these alternatives. Besides being a validated scaffold and drug delivery system, it possesses excellent healing properties. This review covered the last 25 years of the literature and showed that the fibrin sealant is used in various clinical situations to promote the healing of different types of ulcers, especially chronic ones. These are mostly venous in origin and usually does not respond to conventional treatment. Commercially, only the homologous fibrin sealants obtained from human blood are available, which are highly efficient but very expensive. The heterologous fibrin sealant is a non-commercial experimental low-cost product and easily produced due to the abundance of raw material. The phase I/II clinical trial is already completed and showed that the product is safe and promisingly efficacious for the treatment of chronic venous ulcers. In addition, clinical proteomic strategies to assess disease prognosis have been increasingly used. By analyzing liquid samples from the wounds through proteomic strategies, it is possible to predict before treatment which ulcers will evolve favorably and which ones will be difficult to heal. This prognosis is only possible by evaluating the expression of isolated proteins in exudates and analysis using label-free strategies for shotgun. Multicentric clinical trials will be required to evaluate the efficacy of fibrin sealant to treat chronic ulcers, as well as to validate the proteomic strategies to assess prognosis.(AU)
Assuntos
Úlcera Varicosa/classificação , Úlcera Varicosa/reabilitação , Úlcera Varicosa/terapia , Adesivo Tecidual de Fibrina/administração & dosagem , Adesivo Tecidual de Fibrina/análise , Proteômica , BiopolímerosResumo
Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response. Methods: Adult female Lewis rats were subjected to VRA of L4-L6 roots followed by reimplantation and daily treatment with DMF for four weeks. Survival times were evaluated 1, 4 or 12 weeks after surgery. Neuronal survival assessed by Nissl staining, glial reactivity (anti-GFAP for astrocytes and anti-Iba-1 for microglia) and synapse preservation (anti-VGLUT1 for glutamatergic inputs and anti-GAD65 for GABAergic inputs) evaluated by immunofluorescence, gene expression (pro- and anti-inflammatory molecules) and motor function recovery were measured. Results: Treatment with DMF at a dose of 15 mg/kg was found to be neuroprotective and immunomodulatory because it preserved motoneurons and synapses and decreased astrogliosis and microglial reactions, as well as downregulated the expression of pro-inflammatory gene transcripts. Conclusion: The pharmacological benefit was further enhanced when associated with root reimplantation with FS, in which animals recovered at least 50% of motor function, showing the efficacy of employing multiple regenerative approaches following spinal cord root injury.(AU)
Assuntos
Animais , Produtos Biológicos , Biopolímeros , Fibrina , Imunomodulação , Fumarato de Dimetilo , Neuroproteção , Expressão GênicaResumo
Extracellular vesicles (EVs) are small membrane-bound vesicles of growing interest in vetetinary parasitology. The aim of the present report was to provide the first isolation, quantification and protein characterization of EVs from buffalo (Bubalus bubalis) sera infected with Theileria spp. Methods: Infected animals were identified through optical microscopy and PCR. EVs were isolated from buffalo sera by size-exclusion chromatography and characterized using western blotting analysis, nanoparticle tracking analysis and transmission electron microscopy. Subsequently, the proteins from isolated vesicles were characterized by mass spectrometry. Results: EVs from buffalo sera have shown sizes in the 124-140 nm range and 306 proteins were characterized. The protein-protein interaction analysis has evidenced biological processes and molecular function associated with signal transduction, binding, regulation of metabolic processes, transport, catalytic activity and response to acute stress. Five proteins have been shown to be differentially expressed between the control group and that infected with Theileria spp., all acting in the oxidative stress pathway. Conclusions: EVs from buffaloes infected with Theileria spp. were successfully isolated and characterized. This is an advance in the knowledge of host-parasite relationship that contributes to the understanding of host immune response and theileriosis evasion mechanisms. These findings may pave the way for searching new EVs candidate-markers for a better production of safe biological products derived from buffaloes.(AU)
Assuntos
Animais , Búfalos/microbiologia , Doenças Transmissíveis , Theileria , Nanopartículas , Vesículas Extracelulares , Fenômenos Biológicos , ProteômicaResumo
Fibrin biopolymers, previously referred as "fibrin glue" or "fibrin sealants", are natural biomaterials with diverse applications on health. They have hemostatic, adhesive, sealant, scaffold and drug delivery properties and have become widely used in medical and dental procedures. Historically, these biomaterials are produced from human fibrinogen and human or animal thrombin, and the possibility of transmission of infectious diseases by human blood is not ruled out. In the 1990s, to overcome this problem, a new heterologous biomaterial composed of a thrombin-like enzyme purified from Crotalus durissus terrificus venom and a cryoprecipitate rich in fibrinogen extracted from buffaloes Bubalus bubalis blood has been proposed. Therefore, a systematic review of studies on exclusively heterologous fibrin sealants published between 1989 and 2018 was carried out using the following databases: PubMed, SciELO and Google Scholar. The keyword used was "heterologous fibrin sealant". The search resulted in 35 scientific papers in PubMed, four in SciELO and 674 in Google Scholar. After applying the inclusion/exclusion criteria and complete reading of the articles, 30 studies were selected, which formed the basis of this systematic review. It has been observed that the only completely heterologous sealant is the one produced by CEVAP/UNESP. This heterologous biopolymer is proven effective by several studies published in refereed scientific journals. In addition, clinical trials phase I/II for the treatment of chronic venous ulcers authorized by the Brazilian Health Regulatory Agency (ANVISA) were completed. Preliminary results have indicated a safe and promising effective product. Phase III clinical trials will be proposed and required to validate these preliminary findings.(AU)
Assuntos
Biopolímeros , Fibrina , Hemostáticos , TrombinaResumo
Background Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Methods Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F +T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. Results The experiments indicated...(AU)
Assuntos
Humanos , Adesivo Tecidual de Fibrina , Fator 2 de Crescimento de Fibroblastos , Nervo Isquiático , Células-Tronco , Bioengenharia , Regeneração Nervosa , Traumatismos dos Nervos PeriféricosResumo
Background Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy. Methods Five millimeters of the sciatic nerve of C57BL/6 J mice were transected off and rotated 180 degrees to simulate an injury, and then stumps were sutured. Next, we applied heterologous fibrin sealant and/or human embryonic stem cells genetically altered to overexpress fibroblast growth factor 2 (FGF2) at the site of the injury. The study was designed to include six experimental groups comprising neurorrhaphy (N), neurorrhaphy + heterologous fibrin sealant (N + F), neurorrhaphy + heterologous fibrin sealant + doxycycline (N + F + D), neurorrhaphy + heterologous fibrin sealant + wild-type hESC (N + F + W), neurorrhaphy + heterologous fibrin sealant + hESC off (N + F +T), and neurorrhaphy + heterologous fibrin sealant + hESC on via doxycycline (N + F + D + T). We evaluated the recovery rate using Catwalk and von Frey functional recovery tests, as well as immunohistochemistry analysis. Results The experiments indicated...
Assuntos
Humanos , Adesivo Tecidual de Fibrina , Bioengenharia , Células-Tronco , Nervo Isquiático , Regeneração Nervosa , Traumatismos dos Nervos PeriféricosResumo
Background: Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. Methods: The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. Results: The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. Conclusion: It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in ß and γ chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.(AU)
Assuntos
Animais , Espectrometria de Massas , Isoformas de Proteínas , Venenos de Crotalídeos , Crotoxina , Fosfolipases A2 , NeurotoxinasResumo
Hemostatic and adhesive agents date back to World War II, when homologous fibrin sealant came onto scene. Considering that infectious diseases can be transmitted via human blood, a new heterologous fibrin sealant was standardized in the 1990s. Its components were a serine protease (a thrombin-like enzyme) extracted from the venom of Crotalus durissus terrificus snakes and a fibrinogen-rich cryoprecipitate extracted from the blood of Bubalus bubalis buffaloes. This new bioproduct has been used as a coagulant, sealant, adhesive and recently as a candidate scaffold for mesenchymal stem cells and bone and cartilage repair. This review discusses the composition of a new heterologous fibrin sealant, and cites published articles related to its preclinical applications aiming at repairing nervous system traumas and regenerating bone marrow. Finally, we present an innovative safety trial I/II that found the product to be a safe and clinically promising candidate for treating chronic venous ulcers. A multicenter clinical trial, phase II/III, with a larger number of participants will be performed to prove the efficacy of an innovative biopharmaceutical product derived from animal venom.(AU)
Assuntos
Animais , Venenos de Serpentes , Fibrinogênio , Adesivo Tecidual de Fibrina , Serina Proteases , Venenos de CrotalídeosResumo
Hemostatic and adhesive agents date back to World War II, when homologous fibrin sealant came onto scene. Considering that infectious diseases can be transmitted via human blood, a new heterologous fibrin sealant was standardized in the 1990s. Its components were a serine protease (a thrombin-like enzyme) extracted from the venom of Crotalus durissus terrificus snakes and a fibrinogen-rich cryoprecipitate extracted from the blood of Bubalus bubalis buffaloes. This new bioproduct has been used as a coagulant, sealant, adhesive and recently as a candidate scaffold for mesenchymal stem cells and bone and cartilage repair. This review discusses the composition of a new heterologous fibrin sealant, and cites published articles related to its preclinical applications aiming at repairing nervous system traumas and regenerating bone marrow. Finally, we present an innovative safety trial I/II that found the product to be a safe and clinically promising candidate for treating chronic venous ulcers. A multicenter clinical trial, phase II/III, with a larger number of participants will be performed to prove the efficacy of an innovative biopharmaceutical product derived from animal venom.(AU)
Assuntos
Animais , Venenos de Serpentes , Fibrinogênio , Adesivo Tecidual de Fibrina , Serina Proteases , Venenos de CrotalídeosResumo
Background: Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. Methods: The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. Results: The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. Conclusion: It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in ß and γ chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.(AU)
Assuntos
Animais , Espectrometria de Massas , Isoformas de Proteínas , Venenos de Crotalídeos , Crotoxina , Fosfolipases A2 , NeurotoxinasResumo
Abstract Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date, several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants, the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from central nervous system to peripheral nervous system applications, specifying positive results as well as future enhancements that are necessary for improving the use of fibrin sealant therapy.
Resumo
Abstract Hemostatic and adhesive agents date back to World War II, when homologous fibrin sealant came onto scene. Considering that infectious diseases can be transmitted via human blood, a new heterologous fibrin sealant was standardized in the 1990s. Its components were a serine protease (a thrombin-like enzyme) extracted from the venom of Crotalus durissus terrificus snakes and a fibrinogen-rich cryoprecipitate extracted from the blood of Bubalus bubalis buffaloes. This new bioproduct has been used as a coagulant, sealant, adhesive and recently as a candidate scaffold for mesenchymal stem cells and bone and cartilage repair. This review discusses the composition of a new heterologous fibrin sealant, and cites published articles related to its preclinical applications aiming at repairing nervous system traumas and regenerating bone marrow. Finally, we present an innovative safety trial I/II that found the product to be a safe and clinically promising candidate for treating chronic venous ulcers. A multicenter clinical trial, phase II/III, with a larger number of participants will be performed to prove the efficacy of an innovative biopharmaceutical product derived from animal venom.
Resumo
Abstract Background Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. Methods The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. Results The RP-HPLC profile of the isolated crotapotin chains already indicated that the chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. Conclusion It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the chain, at positions 31 and 40. Moreover, substitutions could also be observed in and chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.
Resumo
Background Envenomation caused by multiple stings from Africanized honeybees Apis mellifera constitutes a public health problem in the Americas. In 2015, the Brazilian Ministry of Health reported 13,597 accidents (incidence of seven cases per 100,000 inhabitants) with 39 deaths (lethality of 0.25%). The toxins present in the venom, which include melittin and phospholipase A2, cause lesions in diverse organs and systems that may be fatal. As there has been no specific treatment to date, management has been symptomatic and supportive only. Methods In order to evaluate the safety and neutralizing capacity of a new apilic antivenom, as well as to confirm its lowest effective dose, a clinical protocol was developed to be applied in a multicenter, non-randomized and open phase I/II clinical trial. Twenty participants with more than five stings, aged more than 18 years, of both sexes, who have not previously received the heterologous serum against bee stings, will be included for 24 months. The proposed dose was based on the antivenom neutralizing capacity and the number of stings. Treatment will be administered only in a hospital environment and the participants will be evaluated for a period up to 30 days after discharge for clinical and laboratory follow-up. Results This protocol, approved by the Brazilian regulatory agencies for ethics (National Commission for Ethics on Research - CONEP) and sanitation (National Health Surveillance Agency - ANVISA), is a guideline constituted by specific, adjuvant, symptomatic and complementary treatments, in addition to basic orientations for conducting a clinical trial involving heterologous sera. Conclusions This is the first clinical trial protocol designed specifically to evaluate the preliminary efficacy and safety of a new antivenom against stings from the Africanized honeybee Apis mellifera. The results will support future studies to confirm a new treatment for massive bee attack that has a large impact on public health in the Americas.(AU)
Assuntos
Animais , Abelhas , Antivenenos , Fosfolipases A2 , Meio AmbienteResumo
Background Envenomation caused by multiple stings from Africanized honeybees Apis mellifera constitutes a public health problem in the Americas. In 2015, the Brazilian Ministry of Health reported 13,597 accidents (incidence of seven cases per 100,000 inhabitants) with 39 deaths (lethality of 0.25%). The toxins present in the venom, which include melittin and phospholipase A2, cause lesions in diverse organs and systems that may be fatal. As there has been no specific treatment to date, management has been symptomatic and supportive only. Methods In order to evaluate the safety and neutralizing capacity of a new apilic antivenom, as well as to confirm its lowest effective dose, a clinical protocol was developed to be applied in a multicenter, non-randomized and open phase I/II clinical trial. Twenty participants with more than five stings, aged more than 18 years, of both sexes, who have not previously received the heterologous serum against bee stings, will be included for 24 months. The proposed dose was based on the antivenom neutralizing capacity and the number of stings. Treatment will be administered only in a hospital environment and the participants will be evaluated for a period up to 30 days after discharge for clinical and laboratory follow-up. Results This protocol, approved by the Brazilian regulatory agencies for ethics (National Commission for Ethics on Research - CONEP) and sanitation (National Health Surveillance Agency - ANVISA), is a guideline constituted by specific, adjuvant, symptomatic and complementary treatments, in addition to basic orientations for conducting a clinical trial involving heterologous sera. Conclusions This is the first clinical trial protocol designed specifically to evaluate the preliminary efficacy and safety of a new antivenom against stings from the Africanized honeybee Apis mellifera. The results will support future studies to confirm a new treatment for massive bee attack that has a large impact on public health in the Americas.(AU)
Assuntos
Animais , Abelhas , Antivenenos , Fosfolipases A2 , Meio AmbienteResumo
Abstract Background Envenomation caused by multiple stings from Africanized honeybees Apis mellifera constitutes a public health problem in the Americas. In 2015, the Brazilian Ministry of Health reported 13,597 accidents (incidence of seven cases per 100,000 inhabitants) with 39 deaths (lethality of 0.25%). The toxins present in the venom, which include melittin and phospholipase A2, cause lesions in diverse organs and systems that may be fatal. As there has been no specific treatment to date, management has been symptomatic and supportive only. Methods In order to evaluate the safety and neutralizing capacity of a new apilic antivenom, as well as to confirm its lowest effective dose, a clinical protocol was developed to be applied in a multicenter, non-randomized and open phase I/II clinical trial. Twenty participants with more than five stings, aged more than 18 years, of both sexes, who have not previously received the heterologous serum against bee stings, will be included for 24 months. The proposed dose was based on the antivenom neutralizing capacity and the number of stings. Treatment will be administered only in a hospital environment and the participants will be evaluated for a period up to 30 days after discharge for clinical and laboratory follow-up. Results This protocol, approved by the Brazilian regulatory agencies for ethics (National Commission for Ethics on Research CONEP) and sanitation (National Health Surveillance Agency ANVISA), is a guideline constituted by specific, adjuvant, symptomatic and complementary treatments, in addition to basic orientations for conducting a clinical trial involving heterologous sera. Conclusions This is the first clinical trial protocol designed specifically to evaluate the preliminary efficacy and safety of a new antivenom against stings from the Africanized honeybee Apis mellifera. The results will support future studies to confirm a new treatment for massive bee attack that has a large impact on public health in the Americas.
Resumo
Apis mellifera venom, which has already been recommended as an alternative anti-inflammatory treatment, may be also considered an important source of candidate molecules for biotechnological and biomedical uses, such as the treatment of parasitic diseases. Methods Africanized honeybee venom from Apis mellifera was fractionated by RP-C18-HPLC and the obtained melittin was incubated with promastigotes and intracellular amastigotes of Leishmania (L.) infantum. Cytotoxicity to mice peritoneal macrophages was evaluated through mitochondrial oxidative activity. The production of anti- and pro-inflammatory cytokines, NO and H2O2 by macrophages was determined. Results Promastigotes and intracellular amastigotes were susceptible to melittin (IC50 28.3 g.mL1 and 1.4 g.mL1, respectively), but also showed mammalian cell cytotoxicity with an IC50 value of 5.7 g.mL1. Uninfected macrophages treated with melittin increased the production of IL-10, TNF-, NO and H2O2. Infected melittin-treated macrophages increased IL-12 production, but decreased the levels of IL-10, TNF-, NO and H2O2. Conclusions The results showed that melittin acts in vitro against promastigotes and intracellular amastigotes of Leishmania (L.) infantum. Furthermore, they can act indirectly on intracellular amastigotes through a macrophage immunomodulatory effect.(AU)
Assuntos
Meliteno/imunologia , Leishmania infantum/classificação , Leishmania infantum/imunologia , 26016/intoxicação , Técnicas ImunológicasResumo
Background:Since ionizing radiation has the potential to alter the molecular structure and affect the biologica properties of biomolecules, it has been successfully employed to attenuate animal toxins. The present study aimed to characterize the structural modifications on irradiated crotamine, a toxin from Crotalus durissus terrificus venom, using circular dichroism (CD), fluorescence, Fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM) and differential scanning calorimetry (DSC).Methods:A combination of size exclusion and ion-exchange chromatography was used to purify the peptide using crude venom. The pure toxin was then submitted to 2 kGy gamma irradiation doses from a cobalt-60 source. Native and irradiated crotamine were analyzed using a fluorescence spectrophotometer. Wavelength was fixed at 295 nm and fluorescence emission scans were collected from 300 to 400 nm. CD and FTIR techniques were used to identify the secondary structure of both samples. DSC analyses were performed at a starting temperature of 20 °C up to a final temperature of 90 °C. AFM provided a 3D profile of the surfaces of both crotamine forms adsorbed on mica.Results:Fluorescence spectroscopy showed that the quantum yield of the irradiated form decreased. CD spectra of native and irradiated crotamine solutions showed differences between the samples in wavelength, indicating that irradiation induced a transition of a small portion of the random coil regions towards an a-helical conformation. FTIR and CD showed that the native and irradiated crotamine spectra were different with regard to secondary structure. The thermodynamic analysis showed that irradiation caused changes in the calorimetric profile and CD showed that temperature-induced changes also occur in the secondary structure. Finally, AFM showed the possible formation of insoluble aggregates.Conclusions:Our results indicate that irradiation leads to progressive changes in the structure of the toxin, which could explain a decrease in myotoxic activity.(AU)
Assuntos
Animais , Radiação Ionizante , Varredura Diferencial de Calorimetria , Crotalus cascavella , Dicroísmo Circular , Microscopia de Força AtômicaResumo
Background: Since ionizing radiation has the potential to alter the molecular structure and affect the biologica properties of biomolecules, it has been successfully employed to attenuate animal toxins. The present study aimed to characterize the structural modifications on irradiated crotamine, a toxin from Crotalus durissus terrificus venom, using circular dichroism (CD), fluorescence, Fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). Methods: A combination of size exclusion and ion-exchange chromatography was used to purify the peptide using crude venom. The pure toxin was then submitted to 2 kGy gamma irradiation doses from a cobalt-60 source. Native and irradiated crotamine were analyzed using a fluorescence spectrophotometer. Wavelength was fixed at 295 nm and fluorescence emission scans were collected from 300 to 400 nm. CD and FTIR techniques were used to identify the secondary structure of both samples. DSC analyses were performed at a starting temperature of 20 °C up to a final temperature of 90 °C. AFM provided a 3D profile of the surfaces of both crotamine forms adsorbed on mica. Results: Fluorescence spectroscopy showed that the quantum yield of the irradiated form decreased. CD spectra of native and irradiated crotamine solutions showed differences between the samples in wavelength, indicating that irradiation induced a transition of a small portion of the random coil regions towards an a-helical conformation. FTIR and CD showed that the native and irradiated crotamine spectra were different with regard to secondary structure. The thermodynamic analysis showed that irradiation caused changes in the calorimetric profile and CD showed that temperature-induced changes also occur in the secondary structure. Finally, AFM showed the possible formation of insoluble aggregates. Conclusions: Our results indicate that irradiation leads to progressive changes in the structure of the toxin, which could explain a decrease in myotoxic activity.(AU)